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ORIGINAL

Abstract
We describe an implemented model of glucose absorption in the enterocyte, as previously
published by Afshar et al. Afshar et al. (2019), The model used mechanistic descriptions of all
the responsible transporters and was built in the CellML framework. It was validated against
published experimental data and implemented in a modular structure which allows each individual
transporter to be edited independently from the other transport protein models. The composite
model was then used to study the role of the sodium-glucose cotransporter (SGLT1) and the
glucose transporter type 2 (GLUT2), along with the requirement for the existence of the apical
Glut2 transporter, especially in the presence of high luminal glucose loads, in order to enhance
the absorption. Here we demonstrate the reproduction of the figures in the original paper by
using the associated model.
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Primary Publications
N. Afshar, S. Safaei, D. P. Nickerson, P. Hunter, and V. Suresh. Computational modelling of glucose
uptake in the enterocyte. Frontiers in Physiology, 10:380, 2019. doi: http://dx.doi.org/10.3389/
fphys.2019.00380.

1 Introduction
In the primary paper, a validated computational model was proposed for explaining glucose
uptake from intestinal lumen into epithelial cell. The main goal of this paper is to show that the
figures in the primary paper can be reproduced by using the correlated model in the PMR. Results
from the model were compared with experimental results from Zheng et al. (Zheng et al., 2012)
which studied the glucose uptake on two different cell lines - Caco2 and IEC6 - by using varying
concentration of glucose (0.5 - 50 mM). Here we introduce a quick instruction to reproduce each
figure in the original paper.

2 Model description
We present a mathematical model that includes apical GLUT2 and is parameterised against
published experimental data, and was used to study the contributions of SGLT1 and GLUT2 in
published cell culture data on glucose uptake (Zheng et al., 2012). The implemented model used
mechanistic models of all relevant transporters. In particular, we replaced the Na-Cl co-transporter
in the original model with individual models for the anion exchanger 1 (AE1) and Na+/H+ ex-
changer (NHE3) proteins at the apical membrane and incorporated ENaC and CFTR channels
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for apical Na+ and Cl− transport. This makes it possible to use the model to study scenarios
where the expression and/or function of these transport proteins is altered, for example in gene
knockout/mutation studies or in the use of channel inhibitors and agonists. We constructed a
mathematical model of the epithelial cell of a small intestine (enterocyte) that incorporates the
relevant transport proteins identified in the literature (Barrett and Keely, 2015) and diffusion
pathways (figure 1). The membrane localisation and function of these transporters and the source
of the original mathematical models are listed in Table 1.

Figure 1. Schematic of enterocyte showing the relevant transporters in the apical and basolateral
membrane along with the apical (lumen) and basolateral (interstitium) extracellular domains.

The apical (luminal) and basolateral (interstitial) surface of the cell are in contact with distinct
extracellular compartments. Transport of substances occurs across the membranes as well as
directly between the extracellular compartments across the paracellular junctions. The variables
to be solved in the model are chemical species (Na+,K +,H +,C l −,HCO−

3 , glucose) concentrations
in each compartment and the two membrane potentials. Flux balance and electric charge con-
servation laws yield the governing equations of the model. Water transport is not included and
hence we limit ourselves to modelling iso-osmotic transport.

Transporter Location Role Chemical Species Source of the
mathematical model

SGLT1 Apical Cotransporter 1 Glucose, 2 N a+ Parent et al. (1992)
NaK ATPase Basolateral Exchange Pump 3N a+, 2K + Thorsen et al. (2014)

GLUT2 Apical and Basolateral Uniporter Protein Glucose Pradhan et al. (2013)
NHE3 Apical Antiporter 1 N a+, 1 H + Weinstein (1995)
AE1 Apical Antiporter 1 C l −, 1 HCO−

3 Weinstein (2000)
BK Apical Channel K + Fong et al. (2016)

CFTR Apical Channel C l − Fong et al. (2016)
CLC-2 Basolateral Channel C l − Fong et al. (2016)
ENaC Apical Channel N a+ Fong et al. (2016)
IK Basolateral Channel K + Fong et al. (2016)

NBC Basolateral Cotransporter 1 N a+, 3 HCO−
3 Østby et al. (2009)

NKCC1 Basolateral Cotransporter 1 N a+, 1 K +, 2 C l − Palk et al. (2010)
Table 1. List of transporters used in the model along with their locations and roles
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The model is implemented in the open source, extensible markup language (XML)-based CellML
modelling environment used to represent mathematical models of biology based on ordinary
differential and algebraic equations (Cuellar et al., 2003). We adopted a modular, compositional
approach tomodel construction by reusing CellMLmodels of individual transport proteins encoded
in an online, curated repository (Physiome Model Repository (PMR, models.physiomeproject.org))
to facilitate the sharing of models (Yu et al., 2011). All simulation were run using OpenCOR
(Version 0.5) (Garny and Hunter, 2015). All results presented here can be reproduced using the
SED-ML or Python scripts noted in the figure captions. In some cases the simulation results
are saved to CSV files for plotting using a Python script also noted in the figure caption. We
used python 3.6 with the following versions of different libraries: numpy 1.17.4, matplotlib 3.1.2,
pandas 0.25.3, scipy 1.3.3.

The original CellML file along with all the codes can be found in the following link in the PMR:

https://models.physiomeproject.org/workspace/572

3 Model results
Dynamic response to an apical glucose stimulus

In these simulations, the compositions of the apical and basolateral compartments were identical
and held constant (140 mM Na+, 5.4 mM K+, 103 mM C l −). A time dependant, extracellular
glucose stimulus was applied at t = 60 s (Figure 2A). The simulation file Fig02.sedml contains the
computational setting for running the model.

Comparison with the Thorsen et. al model (Thorsen et al., 2014)

In the next step the results from our model were compared to results from Thorsen model under
the same condition. Model outputs were normalised against the steady state values of the Thorsen
model and are shown in Figure 3. We implemented the Thorsen model in CellML which can be
found in the PMR link 1. All the values in our model are normalised against the corresponding
steady-state values in the Thorsen model as described in the python script.

1https://models.physiomeproject.org/workspace/5b8

3/11

https://models.physiomeproject.org/workspace/572
https://models.physiomeproject.org/workspace/572/file/057757b3a8de9a56b4bd32b8a12a0f00af1d8213/SEDML_files/Fig02.sedml
https://models.physiomeproject.org/workspace/5b8


Figure 2. Dynamic response of the model to an extracellular glucose stimulus. The stimulus
consists of: A - a step increase followed by an exponential decay.B - Apical and basolateral
membrane potentials, C - transepithelial potential, D -and intracellular concentrations of

glucose, E - sodium, F - potassium, G - chloride and H - pH are shown. The results presented in
the figure 2 can be reproduced with the Fig02.py in OpenCOR’s python interface

Comparison against cell culture data

Finally, model predictions were compared against measurements carried out in cell culture studies
(Zheng et al., 2012). The experiments used Caco-2 and IEC6 cell lines. While Caco-2 expresses
both SGLT1 and GLUT2, IEC6 cells do not express GLUT2. We therefore turned off the expression
of GLUT2 in the apical membranes to simulate these cells(in component "Cell_Concentration",
θ26=0). To measure glucose uptake, varying concentrations (0.5 – 50 mM) of glucose were in-
troduced into the apical chamber in a buffer solution with a baseline composition of 130 mM
NaCl, 4 mM KH2PO4, 1 mM CaCl2. The osmolarity of the buffer was maintained during the
measurements by modulating the NaCl content such that if the glucose concentration was x
mM, NaCl concentration was 130 − x/2 mM. After exposure to the glucose stimulus for different
durations (30 – 600 s ), cells were lysed and intracellular glucose and protein concentrations
were measured. Since the measurements were reported in nanomole glucose per milligram (mg)
protein, the data were converted to concentration units (millimole per litre, mM) by doing the
unit conversion from nanomole/m3 to mM and also multiplying by the cellular protein concen-
tration (mg protein per ml cell volume). The conversion factor a (protein density) was used as
a fitting parameter in a non-linear Generalized Reduced Gradient optimization to match model
outputs to the data. The optimization was done using the Microsoft Excel Solver (Microsoft Office
2013) by minimizing the least square error between model predicted and measured intracellu-
lar glucose concentration.These results indicate that the model is able to reproduce a range of
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Figure 3. Comparison of model responses against the model of Thorsen et al (2014). Each
variable has been normalised against the corresponding steady value from the Thorsen model.
The results presented in the figure 3 can be reproduced with the Fig03.py script in OpenCOR’s

python interface and Fig03-plot.py script

independent experimental observations. The volume of the basolateral compartment (Vb ) was
fixed at different multiples (m = 0.1, 1, 10) of the cell volume (Vc ) and also as an infinite bath
to generate a range of predictions. This allowed us to account for the uncertainty in the actual
volume of the basolateral compartment, we collected a range of model predictions by varying the
parameter from small (0.1 times the cell volume) to large (an infinite compartment) values (figure 4).

Role of apical GLUT2 in glucose uptake

In the original study of Zheng et al, the experimental data in Figure 4 were interpreted as indicating
the presence of GLUT2-mediated uptake at the apical membrane (Zheng et al., 2012). In figure 5
we investigated whether an alternative explanation was possible whereby SGLT1 expression levels
in the model could be tuned to reproduce the same trends in intracellular glucose concentration. In
Figure 5, the data for Caco-2 cells at the 600 s time point are compared to the model with varying
levels of apical GLUT2 and SGLT1. The baseline model with normal expression of SGLT1 and apical
GLUT2 provides a good fit to the data over the full range of apical glucose concentrations (Figure
5A). When apical GLUT2 is turned off (in component "Cell_Concentration", θ26=0) with no changes
in SGLT1 expression (Figure 5B), model predictions of intracellular glucose are low compared to
the data for apical glucose concentrations higher than 10 mM. In addition, model predictions
saturate after around 20 mM of apical glucose while the data shows an increasing trend. A higher
expression of SGLT1 was also examined and can provide a better match to the data in the absence
of apical GLUT2. With no apical GLUT2 and 2-fold levels of baseline SGLT1 (Figure 5C) the model
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Figure 4. Intracellular glucose concentrations for a range of extracellular glucose concentrations
in Caco2 and IEC6 cells and exposure times (A: 30 s, B: 60 s, C: 300 s, D: 600 s). Experimental
data points and error bars were digitally extracted from Zheng et al (2012). Strips for the model
predictions represent the range of values generated by settingVb = mVc ,m = 0.1, 1, 10,∞. The
results presented in the figure 4 can be reproduced with the Fig04.py script in OpenCOR’s

python interface and Fig04-plot.py script

overpredicts the data at low apical glucose concentrations (< 10 mM) and underpredicts the data
at apical glucose concentrations > 40 mM (in component "SGLT1_Flux", nSGLT × 2). When SGLT1
levels are increased to 3 times the baseline value (in component "SGLT1_Flux", nSGLT × 3), the
model overpredicts the data over the whole range, except at an apical glucose of 50 mM (Figure
5D)

The contribution of SGLT1 and GLUT2 to the apical glucose flux is shown in Figure 6 follow-
ing 600 s of exposure to apical glucose. The figure shows SGLT1 flux (where in component
"Cell_Concentration", θ26=0), GLUT2 flux (where in "Cell_Concentration", θ6=0) and the total
flux which is basically SGLT1 flux + GLUT2 flux. For different glucose loads in the lumen, the
concentration of ions needs to be changed as described for figure 4.
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Figure 5. Intracellular glucose concentration versus extracellular glucose concentration in Caco2
in the presence/absence of Apical GLUT2 with different numbers of SGLT1 transporter A -

Output of model with apical GLUT2 B - Model does not have apical GLUT2 C - Model does not
have apical GLUT2 and the number of SGLT1 is doubled D - Model does not have apical GLUT2

and the number of SGLT1 is 3-fold higher. Experimental data points and error bars were
digitally extracted from Zheng et al (2012). Strips for the model predictions represent the range
of values generated by settingVb = mVc ,m = 0.1, 1, 10,∞. The results presented in the figure 5
can be reproduced with the Fig05.py script in OpenCOR’s python interface and Fig05-plot.py

script

The developed model was then used to study the effect of 3-fold elevated SGLT1 and GLUT2
expression levels on glucose flux into the basolateral compartment. Figure 7 shows the ratio of
steady state glucose flux into the basolateral compartment, normalised to the flux at baseline
conditions over a range of apical glucose concentrations. In green line the number of SGLT1
protein was multiplied by 3 (in component "SGLT1_Flux", nSGLT × 3) and in blue line the number
of GLUT2 transporter in both membranes was tripled (in component "A_GLUT" and "GLUT2",
nGLUT × 3) and in red line both the SGLT1 and GLUT2 protein were increased 3-fold. For different
apical glucose concentrations, other ion concentrations should be changed as described for figure
4. All the values for each set were divided by the basolateral flux values from baseline conditions.
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Figure 6. Glucose Flux through SGLT1 and GLUT2 in 600 seconds of simulation along with total
apical flux of glucose. The results presented in the figure 6 can be reproduced with the Fig06.py

script in OpenCOR’s python interface and Fig06-plot.py script

We developed a computational model of glucose transport in the enterocyte that includes the
full set of relevant transporters. The model is able to reproduce measurements reported in the
literature and can be used to answer physiologically relevant questions about glucose uptake
rates and mechanisms. In addition, the capabilities of the CellML framework were exploited to
compose existing validated models of individual transporters to create the final model, which
provides greater confidence in the implementation and facilitates model reuse and sharing.

Figure 7. Normalised steady state basolateral glucose flux versus different stimulus of glucose in
the lumen when number of SGLT1 is 3 fold higher(green), number of GLUT2 is 3 fold

higher(blue) and number of both SGLT1 & GLUT2 are 3 fold higher(red). The results presented
in the figure 7 can be reproduced with the Fig07.py script in OpenCOR’s python interface and

Fig07-plot.py script
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4 Discussion
Comparison with existing models

Our model differs from the Thorsen et al. model (Thorsen et al., 2014) in some important respects.
One of the differences between the two models is in the treatment of sodium and chloride trans-
port at the apical membrane. Thorsen et al postulate electro neutral one-for-one fluxes of these
ions to account for the sodium-hydrogen (NHE3) and chloride-bicarbonate (AE1) exchangers and
use Goldman-Hodgkin-Katz (GHK) diffusion to model ENaC and CFTR. In contrast, our model
takes a more general approach by incorporating the individual transport pathways at the apical
membrane (Figure 1). We examined the implications of these modelling choices in Figure 8. Figure
8A shows the ratio of the AE1 flux to NHE3 flux for the simulation conditions of Figure 3. In the
Thorsen model this ratio is equal to 1, whereas the ratio lies in the range 7 - 8 in our model. File
Fig02.sedml was run in the OpenCOR in order to plot chloride flux through AE1 over sodium
flux via NHE3. J_NHE3_N a and J_AE1_C l were plotted and all the data points in AE1 were
divided by corresponding value in the NHE3 data set. Cl/Na cotransporter ratio as stated in the
paper is equal to 1. Thorsen et al. used sodium and chloride diffusion through both apical and
basolateral membrane of the cell. We replaced themwith ENaC and CFTR transporters for sodium
and chloride flux in the apical membrane respectively. Figure 8B shows the ratio of sodium and
chloride flux through transporters in our model to the sodium and chloride flux through diffusion
in the Thorsen model.

Figure 8. Sodium flux and Chloride flux through NHE3 and AE1 compare to NaCl
co-transporter flux in the Thorsen model. The results presented in the figure 8 can be
reproduced with the Fig08.py script in OpenCOR’s python interface and Fig08-plot.py
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Figure 9 shows the model output in each cell line separately. They both were plotted at different
exposure times which indicates that over a short time (30 and 60 seconds) both the cell lines
have tendency to level off. Over a longer time (>= 300 seconds) IEC6 still has a tendency to be
saturated but in Caco2 glucose uptake keeps increasing in higher luminal glucose. Figure 9 is
another way to show figure 4 however it does not contain the experimental results by having all
the exposure times for specific cell lines in one panel. Once again, strips for the model predictions
represent the range of values generated by setting Vb = mVc ,m = 0.1, 1, 10,∞. In this paper
we described how each graph was plotted in the original paper to make things easier for other
scientists in this area to become familiar with the entire process. We also showed that the primary
model can be reproduced which may be a useful feature in generating other related models or
expanding the current model.

Figure 9. Model output - Intracellular glucose concentration versus Extracellular glucose
concentration in a) Caco2 cell line and b) IEC6 cell line. The results presented in the figure 8 can

be reproduced with the Fig09.py script in OpenCOR’s python interface and Fig09-plot.py
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Reproducibility report for: Computational Modelling of Glucose Uptake in the Enterocyte.
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Curation outcome summary: Successfully reproduced all the figures presented in this manuscript.

Box 1: Criteria for repeatability and reproducibility

Model source code provided:

Source code: a standard procedural language is used (e.g. MATLAB, Python, C)

There are details/documentation on how the source code was compiled
There are details on how to run the code in the provided documentation
The initial conditions are provided for each of the simulations
Details for creating reported graphical results from the simulation results

Source code: a declarative language is used (e.g. SBML, CellML, NeuroML)

The algorithms used are defined or cited in previous articles
The algorithm parameters are defined
Post-processing of the results are described in sufficient detail

Executable model provided:

The model is executable without source (e.g. desktop application, compiled code, online service)

There are sufficient details to repeat the required simulation experiments

The model is described mathematically in the article(s):

Equations representing the biological system

There are tables or lists of parameter values

There are tables or lists of initial conditions

Machine-readable tables of parameter values

Machine-readable tables of initial conditions

The simulation experiments using the model are described mathematically in the article:

Integration algorithms used are defined

Stochastic algorithms used are defined

Random number generator algorithms used are defined

Parameter fitting algorithms are defined

The paper indicates how the algorithms yield the desired output

CRBM Reproducibility Report version 1.1.2 1
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Box 2: Criteria for accessibility

Model/source code is available at a public repository or researcher’s web site

Prohibitive license provided

Permissive license provided

Open-source license provided

All initial conditions and parameters are provided

All simulation experiments are fully defined (events listed, collection times and measurements
specified, algorithms provided, simulator specified, etc.)

Box 3: Rules for Credible practice of Modeling and Simulationa

aModel credibility is assessed using the Interagency Modeling and Ananlysis Group conformance rubric:
https://www.imagwiki.nibib.nih.gov/content/10-simple-rules-conformance-rubric

Define context clearly: Extensive

Use appropriate data: Extensive

Evaluate within context: Extensive

List limitations explicitly: Insufficient

Use version control: Extensive

Document adequately: Extensive

Conform to standards: Insufficient

Box 4: Evaluation

Model and its simulations could be repeated using provided declarative or procedural code

Model and its simulations could be reproduced

CRBM Reproducibility Report version 1.1.2 2
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Summary comments: Model and source code are available in the associated OMEX archive. This was used in
our attempt to reproduce the results presented in the paper. We successfully ran the SED-ML files to reproduce
Figure 2 - Figure 9 as presented in this manuscript.

Anand K. Rampadarath1, PhD
Curator

Center for Reproducible Biomedical Modeling
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