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ORIGINAL

Abstract
This paper details a multi-scale model computational model of myocardial energetics—oxidativeATP synthesis, ATP hydrolysis, and phosphate metabolite kinetics—and myocardial mechanicsused to analyze data from a rat model of cardiac decompensation and failure. Combined, thesetwo models simulate cardiac mechano-energetics: the coupling between metabolic productionof ATP and hydrolysis of ATP to generate mechanical work. The model is used to predict howdifferences in energetic metabolic state found in failing versus control hearts causally contributeto systolic mechanical dysfunction in heart failure. This Physiome paper describes how to access,run, and manipulate these computer models, how to parameterize the models to match data, andhow to compare model predictions to data.
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1 Introduction
The multi-scale modeling approach is summarized in Fig. 1. Model components representingmyocardial metabolism Bazil et al. (2016), myocardial cell mechanics Tewari et al. (2016a,b),myocardial whole-organ pumping Lumens et al. (2009), and a simple lumped circulatory modelare integrated together to simulate whole-body cardiovascular function.
All computer codes are available at https://github.com/beards-lab/Rat-Cardiac-Energetic.

• The cardiac metabolic energetic model component is parameterized to match data from in-dividual animals based on the oxidative capacity and cytoplasmic metabolite pools obtainedfrom Lopez et al. (2020).
• Certain parameters from the cross-bridge and calcium-activation models of Tewari et al.(2016a,b) and Campbell et al. (2018) are re-estimated to match data from Janssen et al.(2002) on calcium transients and force-generation in isolated rat cardiac trabeculae, asdetailed below.
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• Wall volumes and anatomic parameters associated with the Lumens et al. (2009) heartmodel are identified based on anatomical data obtained from echocardiography and ex-vivogross morphological measurements on individual animals from Lopez et al. (2020).
• The simple lumped parameter circulatory model is identified based on cardiovascular statevariables measured under resting conditions.

The resulting integrated model is used to predict the in vivo mechanical function and energeticstate of the myocardium under resting conditions in each animal.

Figure 1. Multi-scale modeling of myocardial mechano-energetic function. The model integrates
previously developed and validated models of cardiomyocyte dynamics Tewari et al. (2016a,b),
myocardial energetics Bazil et al. (2016); Gao et al. (2019), whole-organ cardiac mechanics

Lumens et al. (2009) and a simple lumped parameter closed-loop circulatory system
representing the systemic and pulmonary circuits. Data from multiple experimental modalities
are used to identify model components for each individual animal in this study. The model

predicts variables representing the in vivo myocardial energetic state, including ATP hydrolysis
rate, [ATP], [ADP], [Pi], and the free energy of ATP hydrolysis DGATP in the LV myocardium

for each individual animal. Figure reproduced from Lopez et al. (2020).

2 Model of Cardiac Energy Metabolism
2.1 Model Variables:
The cellular energy metabolism model is based on the mitochondrial oxidative phosphorylationmodel of Bazil et al. (2016). The model is governed by 29 ordinary differential equations governingmitochondrial membrane potential, metabolite species concentrations, and cation (H+, K+, andMg2+) concentrations in the mitochondrial matrix, inter-membrane space, and cytosol. Table 1lists the state variables of the model, with a brief description, units used in the model, and thevariable name used in the model codes. The original formulation of the model accounted forreactive oxygen species O·−2 and H2O2, which are ignored here, and thus the model is modifiedaccordingly from Bazil et al. (2016).
The governing equations for these variables are delineated below.
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Table 1. Energetics Model State Variables

State Variable Definition Units Variable name in code
∆Ψ Mitochondrial membrane potential mV DPsi_im_to_matrix
Mitochondrial Matrix State Variables[ATP]x Total matrix ATP concentration M ATP_matrix[ADP]x Total matrix ADP concentration M ADP_matrix[Pi]x Total matrix Pi concentration M Pi_matrix[NADH]x Total matrix NADH concentration M NADH_matrix[NAD]x Total matrix NAD concentration M NAD_matrix[UQH2]x Total matrix ubiquinol concentration M coQH2_matrix[UQ]x Total matrix ubiquinone concentration M coQ_matrix[H+]x Matrix free proton concentration M h_matrix[K+]x Matrix free potassium concentration M k_matrix[Mg2+]x Matrix free magnesium concentration M m_matrix
Intermembrane Space (IMS) State Variables[c2+]i Total cytochrome c2+ (reduced) concentration M cytocred_im[c3+]i Total cytochrome c3+ (oxidized) concentration M cytocox_im[ATP]i Total IMS ATP concentration M ATP_matrix[ADP]i Total IMS ADP concentration M ADP_matrix[AMP]i Total IMS AMP concentration M AMP_matrix[Pi]i Total matrix Pi concentration M Pi_im[H+]i IMS free proton concentration M h_im[K+]i IMS free potassium concentration M k_im[Mg2+]i IMS free magnesium concentration M m_im
Cytosolic Space State Variables[ATP]c Total cytosolic ATP concentration M ATP_c[ADP]c Total cytosolic ADP concentration M ADP_c[AMP]c Total cytosolic AMP concentration M AMP_c[Pi]c Total cytosolic Pi concentration M Pi_c[CrP]c Total cytosolic phosphocreatine concentration M AMP_c[Cr]c Total cytosolic creatine concentration M Pi_c[H+]c cytosolic free proton concentration M h_c[K+]c cytosolic free potassium concentration M k_c[Mg2+]c cytosolic free magnesium concentration M m_c

2.2 Mitochondrial Membrane Potential:
The potential difference across the mitochondrial inner membrane is governed by currents acrossthe membrane:

d∆Ψ/d t = (4JC1 + 2JC3 + 4JC4 − nHF 1F 0JF 1F 0 − JANT − JH l eak ) /Cmi t o (1)

where JC1, JC3, and JC4 are the complex I, III, and IV fluxes, which are associated with pumping 4,2, and 4 positive charges out of the matrix. The F1F0 ATPase turnover rate is JF 1F 0 and nHF 1F 0(= 8/3) is the proton flux stoichiometric number associated with the synthesis of one ATP. Thefluxes JANT and JH l eak are the adenine nucleotide translocator and proton leak fluxes.
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2.3 Mitochondrial Matrix Metabolite State Variables:
Metabolite concentrations in the matrix are governed by:

d [AT P ]x/d t = (JF 1F 0 − JANT ) /V olx
d [ADP ]x/d t = (JANT − JF 1F 0) /V olx
d [P i ]x/d t = (JP I C − JF 1F 0) /V olx

d [NAD ]x/d t = (JC1 − JDH ) /V olx
d [NADH ]x/d t = (JDH − JC1) /V olx

d [UQ ]x/d t = (JC3 − αC2JDH − JC1) /V olx
d [UQH2]x/d t = (−JC3 + αC2JDH + JC1) /V olx (2)

whereV olx is the water volume of the mitochondrial matrix in units of volume of matrix waterspace per unit mitochondrial volume, the fluxes in the right-hand sides of these expressions arein units of moles per unit liter of mitochondrial volume per unit time, and are defined below. Thecoefficient αC2 (= 1/4) accounts for ubiquinone reduction via complex II.
2.4 Inter-Membrane Space (IMS) Metabolite State Variables:
Metabolite concentrations in the intermembrane space are governed by:

d [c2+]i /d t = (−2JC4 + 2JC3) /V ol i
d [c3+]i /d t = (2JC4 − 2JC3) /V ol i

d [AT P ]i /d t = (JANT + JAT PPERM ) /V ol i
d [ADP ]i /d t = (−JANT + JADPPERM ) /V ol i
d [AMP ]i /d t = (JAMPPERM ) /V ol i
d [P i ]i /d t = (−JP I C + JP I P ERM ) /V ol i (3)

whereV ol i is the water volume of the mitochondrial inter-membrane space in units of volumeof IMS water space per unit mitochondrial volume, the fluxes in the right-hand sides of theseexpressions are in units of moles per unit liter of mitochondrial volume per unit time, and aredefined below.
2.5 Cytosolic Metabolite State Variables:
Metabolite concentrations in the cytosolic space are governed by:

d [AT P ]c/d t = (−JAT P ase + JCK + JAK − JAT PPERMVRm/VR c) /V olc
d [ADP ]c/d t = (+JAT P ase − JCK − 2JAK − JADPPERMVRm/VR c) /V olc
d [AMP ]c/d t = (+JAK − JAMPPERMVRm/VR c) /V olc
d [P i ]c/d t = (+JAT P ase − JP I P ERMVRm/VR c) /V olc

d [Cr P ]c/d t = (−JCK ) /V olc
d [Cr ]c/d t = (+JAK ) /V olc (4)

where V olc is the water volume of the cytosolic space in units of volume of cytosolic waterspace per unit cell volume. The fluxes in the right-hand sides of these expressions are definedbelow. The ratioVRm/VRc is ratio of regional volume of the IMS to the cytosolic space. Since the
JAT PPERM , JADPPERM , JAMPPERM , and JP I P ERM fluxes are in units of mass per unit time per unitmitochondrial volume, the multiplication byVRm/VRc converts the units to mass per unit time perunit cytosolic volume. The units of the other fluxes (cytosolic reaction fluxes) are mass per unittime per unit cytosolic volume.
2.6 Cation Concentration State Variables:
The governing equations for the cation (H+, K+, and Mg2+) concentrations in the mitochondrialand extra-mitochondrial compartments are derived using the method outlined in Vinnakota et al.(2009). In brief, the equations account for rapid equilibria between conjugate bases of biochemical
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weak acid species (e.g., ATP4−) and cation bound species (e.g., HATP3−, KATP3−, and MgATP2−).The full set of equations is detailed in the supplementary material published with Bazil et al.(2016).
2.7 Energetic Model Fluxes:
The fluxes on the right-hand sides of Equations (1,2,3, and 4) are defined in Table 2.

Table 2. Energetics Model Reaction and Transport Fluxes

Flux Definition Units Variable name in code
JC1 Electron transportchain Complex I flux mole·sec−1·(L mito)−1 J_ETC1_im_to_matrix
JC3 Electron transportchain Complex III flux mole·sec−1·(L mito)−1 J_ETC3_im_to_matrix
JC4 Electron transportchain Complex IV flux mole·sec−1·(L mito)−1 J_ETC4_im_to_matrix
JF 1F 0 Mitochondrial F1F0ATPase flux mole·sec−1·(L mito)−1 J_F1F0ATPASE_im_to_matrix
JANT Adenine nucleotidetranslocase flux mole·sec−1·(L mito)−1 J_ANT_im_to_matrix
JH l eak Proton leak flux mole·sec−1·(L mito)−1 J_HLEAK_im_to_matrix
JDH Rate of NADHproduc-tion mole·sec−1·(L mito)−1 J_DH_matrix
JP I C Mitochondrial phos-phate carrier flux mole·sec−1·(L mito)−1 J_PIC_im_to_matrix
JAT PPERM Mitochondrial outermembrane ATPpermeation

mole·sec−1·(L mito)−1 J_ATPPERM_cytoplasm_to_im

JADPPERM Mitochondrial outermembrane ADPpermeation
mole·sec−1·(L mito)−1 J_ADPPERM_cytoplasm_to_im

JAMPPERM Mitochondrial outermembrane AMPpermeation
mole·sec−1·(L mito)−1 J_AMPPERM_cytoplasm_to_im

JP I P ERM Mitochondrial outermembrane Pi perme-ation
mole·sec−1·(L mito)−1 J_PIPERM_cytoplasm_to_im

JCK Cytosolic creatine ki-nase flux mole·sec−1·(L cytosol)−1 J_CK_cytoplasm
JAK Cytosolic adenylate ki-nase flux mole·sec−1·(L cytosol)−1 J_AK_cytoplasm
JAT P ase Cytosolic ATP hydrol-ysis flux mole·sec−1·(L cytosol)−1 J_ATPASE_cytoplasm

The mathematical expressions for these fluxes are detailed in Bazil et al. (2016).
2.8 Implementation in Multiscale Model:
The cellular energetics model is implemented in a MATLAB script called EnergeticsModelScript.m.This script is used to predict cytosolic [ATP], [ADP], [AMP], [Pi], [Cr], and [CrP] at a specified inputrate of cytosolic ATP hydrolysis. Input and output arguments for the script are listed below inTables 3 and 4.
3 Cardiomyocyte Mechanics Model
3.1 Model Variables and Equations:
A cardiomyocyte mechanics model based on the models of Tewari et al. (2016a,b) and Campbellet al. (2018) is used to simulate the active and passive components of myocardial wall tension
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Table 3. Input arguments for cellular energetics model

Input variable Definition Units used incode Values
TAN total adenine nu-cleotide pool mole·(l cell)−1 0.0071–0.0086 for sham0.0052–0.0085 for TACCRtot total creatine pool mole·(l cell)−1 0.0267–0.0330 for sham0.0146–0.0278 for TACTEP total exchangeablephosphate pool mole·(l cell)−1 0.0247–0.0298 for sham0.0181–0.0293 for TACOx_capacity oxidative capacity (rel-ative to control) unitless 0.834–1.1526 for sham0.5287–0.9755 for TACx_ATPase ATP hydrolysis rate mmole·sec−1·(lcell)−1 0.9301–1.392 for sham0.6758–1.410 for TAC

Table 4. Output arguments for cellular energetics model

Output variable Definition Units used incode Values
MgATP_cytoplasm cytosolic [MgATP] mmole·(l cy-tosol water)−1 7.2145–9.4386 for sham4.9384–9.0634 for TACMgADP_cytoplasm cytosolic [MgADP] mmole·(l cy-tosol water)−1 0.0467–0.0598 for sham0.0274–0.0549 for TACfPi_cytoplasm cytosolic unchelated[Pi] mmole·(l cy-tosol water)−1 0.4393–1.3073 for sham1.1437–1.6650 for TACMVO2_tissue oxygen consumptionrate µmole·min−1·(gtissue)−1 7.617–12.380 for sham6.9104–12.450 for TACdGrATPase ATP hydrolysis freeenergy kJ·mole−1 -(66.054–62.71) for sham-(63.574–61.44) for TACPCrATP CrP/ATP ratio unitless 1.817–2.324 for sham1.4985–1.897 for TACATP_cyto cytosolic total [ATP] mmole·(l cy-tosol water)−1 8.733–11.438 for sham5.983–10.959 for TACADP_cyto cytosolic total [ADP] mmole·(l cy-tosol water)−1 0.1164–0.1486 for sham0.0682–0.1359 for TACPi_cyto cytosolic total [Pi] mmole·(l cy-tosol water)−1 0.7403–2.197 for sham1.9225–2.798 for TAC

used in the heart model (§3, below) and to determine the ATP hydrolysis rate used in the energymetabolism model (§1, above). The components of the model are illustrated in Fig. 2.The five states in the cross-bridge model correspond to: the non-permissible (no calcium bound)state N , the permissible (calcium-bound) state P , loosely attached state A1, strongly attachedstate A2, and post-ratcheted state A3. The attached states are distributed over a continuum ofcross-bridge strain. To numerically simulate the model a moment-expansion approach is usedwhere ordinary differential equations for the first three moments of the probability distributionsof strain of each of the attached states are simulated.

The state variables for the cross-bridge model are tabulated below.
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Table 5. State variables in cross-bridge model

StateVariable Definition Units used in code Variable namein code
p0
1

The 0th moment of state A1 strainprobability distribution. Equal to theproportion of cross-bridges in state A1. unitless P1_0
p11

The 1st moment of state A1 strainprobability distribution. µm P1_1
p21

The 2nd moment of state A1 strainprobability distribution. µm2 P1_2
p0
2

The 0th moment of state A2 strainprobability distribution. Equal to theproportion of cross-bridges in state A2. unitless P2_0
p12

The 1st moment of state A2 strainprobability distribution. µm P2_1
p22

The 2nd moment of state A2 strainprobability distribution. µm2 P2_2
p0
3

The 0th moment of state A3 strainprobability distribution. Equal to theproportion of cross-bridges in state A3. unitless P3_0
p13

The 1st moment of state A3 strainprobability distribution. µm P3_1
p23

The 2nd moment of state A3 strainprobability distribution. µm2 P3_2
N Non-permissible XB state unitless N
UNR Non relaxed state unitless U_NR

The equations used to simulate the cross-bridge model are
dp01
d t

= kaP (t )UNROVt hi ck − k̃dp01 − k̃1
(
(p01 − α1p

1
1 + 1/2α

2
1p

2
1

)
+ k−1

(
p02 + α1p

1
2 +

1

2
α21p

2
2

)
dp11
d t

= vp01 − k̃dp
1
1 − k̃1

(
p11 − α1p

2
1

)
+ k−1

(
p12 + α1p

2
2

)
dp21
d t

= 2vp11 − k̃dp
2
1 − k̃1p

2
1 + k−1p

2
2

dp02
d t

= k̃1

(
p01 − α1p

1
1 +

1

2
α21p

2
1

)
− k−1

(
p02 + α1p

1
2 +

1

2
α21p

2
2

)
− k2

(
p02 − α2p

1
2 +

1

2
α22p

2
2

)
+ k̃−2p

0
3

dp12
d t

= vp02 + k̃1
(
p11 − α1p

2
1

)
− k−1

(
p12 + α1p

2
2

)
− k2

(
p12 − α2p

2
2

)
+ k̃−2p

1
3

dp22
d t

= 2vp12 + k̃1p
2
1 − k−1p

2
2 − k2p

2
2 + k̃−2p

2
3

dp03
d t

= k2

(
p02 − α2p

1
2 +

1

2
α22p

2
2

)
− k̃−2p03 − k̃3

(
p03 − α3s

2
3p

0
3 + 2α3s3p

1
3 + p

2
3

)
dp13
d t

= vp03 + k2
(
p12 − α2p

2
2

)
− k̃−2p13 − k̃3

(
p13 − α3s

2
3p

1
3 + 2α3s3p

2
3

)
dp23
d t

= 2vp13 + k2p
2
2 − k̃−2p

2
3 − k̃3

(
p23 + α3s

2
3p

2
3

) (5)
where v is the velocity of sliding (v = dSL/d t where SL is the sarcomere length, used below inthe heart model of Section 4).
Metabolite concentrations affect the apparent rate constants in the model via the following
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relations:
k̃d = kd

[Pi]/KP i
1 + [Pi]/KP i

k̃1 = k1
1

1 + [Pi]/KP i
k̃−2 = k−2

[MgADP]/KMgADP
1 + [MgADP]/KMgADP + [MgATP]/KMgAT P

k̃3 = k3
[MgATP]/KMgAT P

1 + [MgADP]/KMgADP + [MgATP]/KMgAT P (6)
A detailed description of the moment expansion and associated equations is given in Tewari et al.(2016a).

Figure 2. Cardiomyocyte mechanics model. The multi-scale strain-dependent model for the
cross-bridge cycle is illustrated in panel A. The integration of the cross-bridge force (σXB) into a

model of muscle mechanics is illustrated in panel B.

3.2 Calcium activation:
The calcium activation model is adopted from Campbell et al. (2018) model with minor modifica-tions. The equations for calcium-mediated transition from the N to the P state are:

Jon = kon [Ca2+]N (
1 + kcoop (1 − N )

)
Jof f = kof f P

(
1 + kcoopN

) (7)
The term kcoop (1 − N ) is representative of cooperative activation. The variable N represents thenon-permissible state:

P = 1 − N − p01 − p
0
2 − p

0
3

dN

d t
= −Jon + Jof f (8)

where P is the permissible (calcium-bound).
3.3 Super-relaxed state:
The Campbell et al. model for calcium activation includes a transition between a super-relaxedand not relaxed state.

USR � UN R

USR +UNR = 1 (9)
where the transition from super-relaxed (USR ) to non-relaxed (UNR ) state is force-dependent:

dUNR
d t

= kSR (1 + kf or ceσXB )USR − k−SRUNR . (10)
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where σXB , is active contractile force and formulated in equation 12.
3.4 Overlap function:
Following Rice et al. (2008) the fractional overlap between thin and thick filament is representedas follows:

OVZ−axi s = min (Lt hi ck /2, SL/2) ,

where OVZ−axi s is the overlap region closest to the Z-axis,
OVM−l i ne = max (SL/2 − (SL − Lt hi n ) , Lbar e/2) ,

whereOVM−l i ne is the overlap region closest to theM-line. The length of overlap LOV is computedas following:
LOV = OVZ−axi s −OVM−l i ne .

Using length of overlap LOV, fraction of thick filament overlap is computed as following:
OVt hi ck = 2LOV /(Lt hi ck − Lbar e ) . (11)

Here SL is the length of sarcomere, Lt hi ck , Lt hi n , Lbar e are the length of thick filament, bareregion of the thick filament and, the length of the thin filament.
Table 6. Sarcomere overlap function parameters

Parameter Definition Value and units Parameter name in code
Lt hi n thin filament length 1200 nm L_thin
Lt hi ck thick filament length 1670 nm L_thick
Lb ar e bare length of the thick filament 100 nm L_hbare
OVZ−axi s overlap region closest to the Z-axis nm sovr_ze
OVM−l i ne overlap region closest to the M-line nm sovr_cle
LOV length of overlap nm L_sovr
OVt hi ck fraction of thick filament overlap unitless N_overlap

3.5 Active and passive force:
The active force generated by cross-bridges is computed from contributions from pre- and post-ratcheted states:

σXB (t ) = OVt hi ck (kst i f f ,1
(
p22 + p

2
3

)
+ kst i f f ,2∆r p

0
3) (12)

where kst i f f ,1 and kst i f f ,2) are stiffness constants, ∆r is the cross bridge strain associated withratcheting deformation. The full muscle model (Fig. 2) includes contributions from the activeforce generated by the cross-bridge mechanics, the viscous and passive forces associated withthe muscle, F1 and F2, and a series element force FSE . Overall force balance for the model yields
σSE (t ) = σXB (t ) + σ1 (t ) + σ2 (t ) . (13)

The stress contributed from the dashpot (viscous) is determined from the rate of change ofsarcomere length.
σ1 = η

dSL

d t
. (14)

The passive force σ2 is a function of sarcomere length and is calculated
σ2 (SL) = kpassiv e (SL − SLr est ) + σP assiv ecol l agen (SL) (15)
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where kpassiv e is the stiffness parameters for the passive force, SLr est is the sarcomere rest length,and the passive force exerted by collagen is adopted from Rice et al. (2008).
σP assiv ecol l agen (SL) =

{
P concol l agen

[
ePExpcol l agen (SL−SLcol l agen ) − 1

]
i f SL > SLcol l agen

0 otherwise . (16)
where P concol l agen = 0.01 (unitless) is the scale factor for passive force contributed by collagen.
PExpcol l agen = 70 µm−1 is a model parameter and SLcol l agen = 2.25 µm is the minimum lengththreshold at which collagen starts to exert force on sarcomere.

3.6 Model Parameters:
Certain parameters from the cross-bridge and calcium-activation models of Tewari et al. (2016a,b)and Campbell et al. (2018) were re-estimated to match data from Janssen et al. (2002) on calciumtransients and force-generation in isolated rat cardiac trabeculae. In brief, experiments wereconducted at 37◦ C. Calcium transients (Fig. 3) were measured at different stimulation frequenciesat fixed sarcomere length SL = 2.2 µm. Isometric tension time courses were measured at differentstimulation frequencies and sarcomere lengths. Fig. 3 shows data on peak developed tension(Tdev ) as a function of SL at stimulation frequency of 4 Hz; and data on relaxation time from peakto 50% of peak tension (RT 50); peak developed tension (Tdev ) and time to peak tension (TT P ) asfunction of SL.
Model simulations were fit to these data to estimate unknown parameters in the calcium activationand cross-bridge kinetics components of the model. Specifically, parameters adjusted to valuesdifferent from those in the original publication are indicated below in Table 7.

Figure 3. Crossbridge model parameters estimation. For SL = 1.9 µm the Ca50 = 5.89 and Hill
coefficient n = 4.63 and for SL = 2.3 µm the Ca50 = 6.001 and Hill coefficient n = 4.47. Error

bars shown in panel (B) represent standard error from the n = 9 data-set Janssen et al. (2002).

4 Heart Model
4.1 Model Variables and Equations:
A modified version of the Lumens et al. (2009) TriSeg model is used to simulate left- and right-ventricular mechanics, based on the implementation of Tewari et al. (2016b). Tension developmentin each of the left-ventricular free wall, septum, and right-ventricular free wall is simulated usinga cell mechanics model to represent each of these segments. From Eq. (14) the rates of change ofsarcomere length in these three segments is given by
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Table 7. Model parameters for cross bridge model

Parameter Definition Value andunits Parametername in code Reference
kst i f f ,1 Stiffness constant due tomyosin–actin interaction 13013mmHg/µm kstiff1 Fit to data inFig. 3
kst i f f ,2 Stiffness constant due to work-ing stroke of XBs 341590mmHg/µm kstiff2 Fit to data inFig. 3
kpassiv e Passive stiffness constant 25mmHg/µm k_passive Fit to data inFig. 3
SLr est Sarcomere length at which pas-sive force is zero 1.8 µm SL_rest_pas Campbell et al.(2018)
α1 Strain-dependency parameter 10 µm−1 alpha1 Tewari et al.(2016b)
α2 Strain-dependency parameter 9 µm−1 alpha2 Tewari et al.(2016b)
α3 Strain-dependency parameter 5.93 µm−2 alpha3 Fit to data inFig. 3
s3 Strain-dependency parameter 9.9×10−3 µm s3 Tewari et al.(2016b)
kcoop Strength of thin filament cooper-ativity 1.857 K_coop Fit to data inFig. 3
kon Rate constant of Ca binding totroponin C 101.2 µM−1·s−1 k_on Fit to data inFig. 3
kof f Rate constant of Ca unbindingfrom troponin C 101.2 s−1 k_off Fit to data inFig. 3
kf or ce Force-dependent rate constantof super relax transition 1.169 × 10−3N−1·m−2 kforce Fit to data inFig. 3
kSR Rate constant of force-dependent super relax transition 14.44 s−1 ksr Fit to data inFig. 3
k−SR Rate constant of force-dependent super relax transition 50.03 s−1 kmsr Fit to data inFig. 3
kMgAT P [MgATP] dissociation constant 489.7 µM K_T Tewari et al.(2016b)
kMgADP [MgADP] dissociation constant 194.0 µM K_D Tewari et al.(2016b)
kP i [Pi] dissociation constant 4.0 mM K_Pi Tewari et al.(2016b)
ka Myosin–actin rate of attachment 559.6 s−1 ka Fit to data inFig. 3
kd Myosin–actin rate of un-attachment 304.7 s−1 kd Fit to data inFig. 3
k1 Transition rate constant 112.4 s−1 k1 Fit to data inFig. 3
k−1 Rate of strongly-bound toweakly-bound transition 21.30 s−1 km1 Tewari et al.(2016b)
k2 Rate of ratcheting 811.7 s−1 k2 Tewari et al.(2016b)
k−2 Reverse ratcheting rate 43.25 s−1 km2 Tewari et al.(2016b)
k3 Myosin–actin detachment rate 144.6 s−1 k3 Fit to data inFig. 3

dSLRV
d t

=
σSE ,RV − σ2 (SLRV ) − λXBσXB ,RV (t )

η

dSLLV
d t

=
σSE ,LV − σ2 (SLLV ) − λXBσXB ,LV (t )

η

dSLSEP
d t

=
σSE ,SEP − σ2 (SLSEP ) − λXBσXB ,SEP (t )

η
(17)
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where the parameter λXB is a scalar used to account for differences in force generation in vivoversus in vitro. (The value value λXB = 1.4, determined by Tewari et al. (2016b) accounts forslightly lower force generation in vitro versus in vivo.)
The SL and dSL

d t computed from Eq. (17) are used in Eqs. (5) which govern cross-bridge dynamicsin each segment. The dynamical state of the cross-bridge model in each segment, in turn, appearsin Eq. (17), which governs SL (t ) for each segment.
The series element elastic force for each segment is computed to be proportional to the differencebetween the sarcomere length and the sarcomere length calculated from natural myofiber strain:

σSE ,RV = KSE (SL0,RV − SLRV )
σSE ,LV = KSE (SL0,LV − SLLV )
σSE ,SEP = KSE (SL0,SEP − SLSEP )

where
SL0,# = SLr ef exp (εf ,#))
εf ,# =

1

2
l n (

Am,#
Am,r ef ,# ) −

1

12
z 2# − 0.019z 4#

z# =
3Cm,#VW ,#
2Am,#

Vm,# =
π

6
xm,# (x 2m,# + 3y 2m )

Am,# = π (x 2m,# + y 2m )
Cm,# =

2xm,#
x 2
m,# + y 2m

.

Here Am,# the midwall surface area of segment #, Am,r ef ,# is a reference midwall surface area,
Cm,# is the curvature of the midwall surface,Vw ,# is the wall volume of wall segment i,Vm,# is themidwall volume, and xm,# and ym determine the geometry of the LV and RV cavity (see Lumenset al. (2009)). The four variables of the TriSeg heart model, xm,RV , xm,LV , xm,SEP , and ym thatdetermine the geometry of the ventricular cavities, are listed in Table 8.

Table 8. State variables in TriSeg (Heart) model

State Variable Definition Units Variable name in code
xm , RV Maximal axial distancefrom RV midwall surface to origin cm Xm_RV
xm , LV Maximal axial distancefrom LV midwall surface to origin cm Xm_LV
xm , SEP Maximal axial distancefrom SEP midwall surface to origin cm Xm_SEP
ym Radius of midwall junction circle cm ym

For given wall volumes and ventricular volumes, the geometry of the heart is solved such thatequilibrium of radial and axial tensile forces is achieved at the junction margin (i.e., where thethree wall segments meet forming ventricular cavities).
Tension in the midwall of each segment is calculated as a function of stress:

Tm,# = VW ,#σSE ,#
2Am,#

(
1 +

z 2

3
+
z 4

5

)
(18)

Axial and radial components of the tension are computed
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Tx ,# = Tm,# 2xm,#ym
x 2
m,# + y 2m

Ty ,# = Tm,#
−x 2

m,# + y 2m
x 2
m,# + y 2m

(19)

The four unknowns of the model—xm,RV , xm,LV , xm,SEP , and ym—are determined by satisfyingthe relations
Vm,LV = −VLV − 1

2Vw ,LV −
1
2Vw ,SEP +Vm,SEP

Vm,RV = +VRV − 1
2Vw ,RV −

1
2Vw ,SEP −Vm,SEP

Tx ,RV +Tx ,LV +Tx ,SEP = 0

Ty ,RV +Ty ,LV +Ty ,SEP = 0 .

Transmural pressures are computed
Pt r ans,# = 2Tx ,#

ym
(20)

and the pressures in the cavities are computed
PLV = −Pt r ans,LV
PRV = +Pt r ans,RV .

4.2 Model Parameters
Parameters defining the mass and geometry of the heart are identified from data on individualanimals are defined in Table 9.

Table 9. Parameters in TriSeg (Heart) model

Parameter Definition Value and Units Variable name in code
Vw ,LV LV wall volume input(experimental data), mL Vw_LV
Vw ,SEP Septal wall volume input(experimental data), mL Vw_SEP
Vw ,RV RV wall volume input(experimental data), mL Vw_RV
ALW
m,r ef

LV midwall referencesurface area adjustable, cm2 Amref_LV
ASEP
m,r ef

Septal midwall referencesurface area adjustable, cm2 Amref_SEP
ARW
m,r ef

RV midwall referencesurface area adjustable, cm2 Amref_RV
KSE Stiffness of series element 50000 mmHg/µm Kse
η Viscosity coefficient of myofibers 1 mmHg·sec·µm−1 eta

5 Lumped-Parameter Cardiovascular Systems Model
5.1 Model Variables and Equations:
The lumped-parameter model illustrated in Fig. 4 is used to simulate pressures and flows in thesystemic and pulmonary circuits. This simple lumped model invokes eight parameters repre-senting: pulmonary resistance Rpul , pulmonary arterial and venous compliances CPA and CPV ,systemic arterials resistances RAo and Rs y s , systemic arterial complianceCSA, and systemic venouscompliance CSV , systemic arterial resistance and aortic compliance CAo .
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Figure 4. Cardiovascular system (CVS) diagram. Adopted from Tewari et al. Tewari et al.
(2016a,b). CPA, CPV , CSA, CAo , and CSV represent lumped compliances of pulmonary arteries,
pulmonary veins, systemic arteries, aorta, and systemic veins. Rpul , Rs y s , and RAo represent
vascular resistances. The lumped-parameter representations of the systemic and pulmonary

circuits are coupled to the TriSeg heart model of Lumens et al. (2009), described below.

Flow through a resistive element is calculated
q =

P1 − P2
R

(21)
where P1 − P2 is the pressure drop across the element, and R is the resistance. Pressure in acompliant/capacitive element is governed by

dP

d t
=
Fi n − Fout

C
(22)

where Fi n − Fout is the rate of change of blood volume in the element. Table 10 lists the variablesof the cardiovascular systems model. These variables and Eqs. 21 and 22 are invoked in theMATLAB code Cardiovascularmechancis.m.
Table 10. Variables used in lumped-parameter cardiovascular model

Parameter Definition Units used in code Variable name in code
Cardiovascular system model state variables
VLV Left ventricle volume mL V_LV
VRV Right ventricle volume mL V_RV
VSV Volume of systemic vein mL V_SV
VPV Volume of pulmonary vein mL V_PV
VSA Volume of systemic artery mL V_SA
VPA Volume of pulmonary artery mL V_PA
VAo Volume of aorta mL V_Ao
Pressures computed from volume state variables
PSV Systemic venous pressure mmHg P_SV
PPV Pulmonary venous pressure mmHg P_PV
PPA Pulmonary arterial pressure mmHg P_PA
PAo Aortic pressure (proximal to TAC) mmHg P_Ao
PSA Systemic arterial pressure (distal to TAC) mmHg P_SA

5.2 Identification of Model Parameters:
Table 11 lists the parameters used in the lumped circulatory model.
The systemic compliances (CSA,CAo , CSV ) are fixed to produce a pulse pressure of roughly 33mmHg for simulations of sham control rats. The pulmonary compliance (CPA, CPV ) are fixed toroughly have the target value of 12 mmHg for the pulmonary pulse pressure. The resistance RAois arbitrarily set to have a small pressure drop of 4 mmHg between the aorta and systemic arteries
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Table 11. Parameter used in the CVS model

Parameter Definition Value and Units Variable namein code
CAo Proximal aortic compliance 0.0022045 mL·mmHg−1 C_Ao
CSA Systemic arterial compliance 0.0077157 mL·mmHg−1 C_SA
CSV Systemic venous compliance 2.5 mL·mmHg−1 C_SV
CPA Pulmonary arterial compliance 0.013778 mL·mmHg−1 C_PA
CPV Pulmonary venous compliance 0.25 mL·mmHg−1 C_PV
RAo Proximal aortic resistance 2.5 mmHg·sec· mL−1 R_Ao
Rs y s Systemic vasculature resistance adjustable, mmHg·sec· mL−1 R_sys
RSV Systemic veins resistance 0.25 mmHg·sec· mL−1 R_SV
RT Ao Transmural aortic resistance 0.5 mmHg·sec· mL−1 R_tAo
RT SA Transmural systemic artery resistance 4 mmHg·sec· mL−1 R_tSA
RPA Pulmonary vasculature resistance 7.58 mmHg·sec· mL−1 R_PA
RPV Pulmonary veins resistance 0.25 mmHg·sec· mL−1 R_PV
RV LV Valve resistance 0.05 mmHg·sec· mL−1 R_VLV
RT AC Resistance of TAC adjustable, mmHg·sec· mL−1 R_TAC

for cardiac output of the mean value of 95 mL per min. The systemic venous resistance RSV is setso that the mean pressure in the systemic veins for sham control rats is 3 mmHg. The pulmonaryresistances RPA and RPV are set to give a mean pulmonary arterial pressure of 21 mmHg andpulmonary venous pressure of 9 mmHg in the sham control rats.
The two parameters in the circulation model that are adjusted to match measured data onindividual TAC and sham rats are RT AC and Rs y s . The resistance RT AC represents the resistanceacross the transverse aortic constriction (TAC), and is set to zero in sham-operated rats. In TACrats, the value of this resistance is obtained based on the pressure gradient across the TACconstriction estimated from ultrasound measurements of the velocity gradient. The pressure dropacross the constriction is computed ∆PT AC = 1

2ρ (V
2
2 −V

2
1 ), whereV1 andV2 are the velocities oneither side of the TAC constriction. Given an estimated pressure drop the resistance is computed

RT AC =
∆PT AC
CO , where CO is the cardiac output. The systemic resistance Rs y s is adjusted so thatthe mean arterial pressure (MAP) is maintained at 93.3 mmHg. (Model fitting procedures aredetailed below in Section 6.)

6 Model fits and predictions associated with individual rats
6.1 Summary:
The cardiac energy metabolism and the whole-body cardiovascular mechanics model (whichincludes the heart model) are implemented as separate modules. These models are matched todata on an individual animal basis. The cardiac energetics model takes as an input the myocardialATP consumption rate, the measured metabolite pools levels, and the measured mitochondrialATP synthesis capacity, and outputs the cytoplasm concentrations of phosphate metabolites.The cardiac mechanics code takes as an input the cytoplasmic concentrations of phosphatemetabolites (namely, ATP, ADP, and Pi) and computes as an output the ventricular end-systolicand end-diastolic volumes and arterial pressures to compare to measured data, and the myocardialATP hydrolysis rate to use in the energetics module. The energetics and mechanics models areiteratively run until they simultaneously converge to a steady state at fit the target cardiovasculardata.
6.2 Relationship between cross-bridge cycle and ATP hydrolysis rates:
The relationship between cross-bridge cycle rate and J_ATP, the rate myocardial oxygen con-sumption rate, is based on matching the myocardial oxygen consumption rate predicted by themodel to that observed for the working rat heart. Duvelleroy et al. (1976) report a mean oxygenconsumption rate of approximately MVO2 = 0.31 mL·(min·g)−1 for work rates corresponding
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Table 12. Input arguments and adjustable parameters for cardiovascular mechanics model

Parameter Variablename incode
Definition Units used incode Values

HR HR Heart rate bpm 318.6–367 for sham 294–349 for TAC. Set to mea-sured valueVw,LV Vw_LV LV wall volume mL 0.564–0.853 for sham0.863–1.22 for TAC. Setas 2/3 of measured LVvolumeVw,SEP Vw_SEP Septal wall volume mL 0.2821–0.4266 for sham0.431–0.61 for TAC. Setas 1/3 of measured LV vol-umeVw,RV Vw_RV RV wall volume mL 0.282–0.373 for sham0.249–0.605 for TAC. Setas measured RV free wallvolume
ALW
m,r ef

Amref_LV LV midwall referencesurface area cm2 1.6865–2.465 for SHAM2.299–2.966 for TAC. Ad-justed to fit data
ASEP
m,r ef

Amref_SEP Septal midwall refer-ence surface area cm2 1.055–1.487 for sham1.299–1.620 for TAC.Adjusted to fit data
ARW
m,r ef

Amref_RV RV midwall referencesurface area cm2 2.629–3.612 for sham3.135–5.538 for TAC.Adjusted to fit data
kf or ce k_force Model parameter forforce dependent su-per relax transition

N−1 m2 (0.905–3.312)×10−3 forsham (1.464–3.783)×10−3for TAC. Adjusted to fitdata
kSR ksr On rate constant forsuper relax state s−1 9.021–33.013 for sham14.598–37.708 for TAC.Adjusted to fit data
Rs y s R_sys Systemic vasculatureresistance mmHg·sec·mL−1 38.071–71.886 for sham50.577–125.33 for TAC.Adjusted to fit data
RT AC R_TAC resistance of TAC mmHg·sec·mL−1 0 for sham 7.11–22.25 forTAC. Adjusted to fit dataMgATP_cyto-plasm MgATP cytosolic [MgATP] mmole·(Lcytosolwater)−1

7.214–9.439 for sham4.938–9.063 for TAC .Predicted from energeticsmodelMgADP_cyto-plasm MgADP cytosolic [MgADP] mmole·(Lcytosolwater)−1
0.047–0.06 for sham0.027–0.055 for TAC.Predicted from energeticsmodelPi_cyto-plasm Pi cytosolic total [Pi] mmole·(Lcytosolwater)−1
0.740–2.197 for sham1.922–2.798 for TAC.Predicted from energeticsmodel

to resting state in blood perfused working hearts. Using a myocardial cell density (in terms ofcardiomyocyte volume per unit mass of myocardium) of ρcel l = 0.694 mL·g−1 and assuming aP/O2 ratio (moles of ATP synthesized per mole of O2 consumed) of 4.5 Wu et al. (2008), weestimate a resting ATP hydrolysis rate of 1.30 mmol·(sec·L cell)−1. (This value is approximately 2.5times higher than the estimated resting ATP hydrolysis rate of to 0.547 mmol·(sec·L cell)−1 for
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human myocardium Gao et al. (2019).)
Simulations of the cardiovascular mechanics model predict an average cross-bridge cycling rateof 5.03 sec−1 for the mean sham-operated control rat. Assuming a fixed proportionality betweencross-bridge cycling rate and myocardial ATP hydrolysis rate, yields a constant of proportionalityof

ATPhydrolysis rate(mmol · (sec · L cell)−1) =
0.258 (mmol · (L cell)−1) × crossbridge cycling rate (sec−1) . (23)

If we assume that roughly 3/4 of the ATP consumed by the cardiomyocyte is consumed by themyosin ATPase, we estimate from this constant of proportionality the density of cross-bridge-forming units in a cardiomyocyte to be roughly 0.34 mmol per liter of cell. This density has beenindependently estimated to be 0.25 mmol per liter of cell for skeletal myocytes (Barclay et al.(2010)).
6.3 Fitting data on individual rats:
The full set of adjustable parameters invoked in the cardiovascular systems model is listed in Table12. Certain adjustable parameters are set based on direct measurements and others are adjustedso that simulation outputs match measured data. Seven parameter values—ALW "

m,r ef
, ASEP

m,r ef
, ARW

m,r ef, kf or ce , kSR , Rs y s , RT AC—are adjusted to fit model predictions to data from individual animals onend-systolic and end-diastolic volumes and estimated pressure drop across the aortic constrictionin TAC animals, and to simultaneously maintain a fixed mean arterial pressure of 93.3 mmHg, tomaintain end-diastolic sarcomere lengths in the LV, septum, and RV of 2.2 µm.
Ranges of estimated values of are listed in Table 12. Values of anatomical/geometric parametersrepresenting heart masses and reference areas are higher in TAC rats than in sham control rats,reflecting hypertrophic remodeling. The parameters kf or ce and kSR govern the transition outof the inaccessible super-relaxed state in the calcium-activation model. Increased in the valuesof these parameters represent increased levels of phosphorylation of myosin binding proteinC. Thus, the higher values of these parameters in TAC compared to sham animals represent aprediction that phosphorylation of this protein is increased in the TAC animals.
Simulations of TAC rats consistently show lower ATP, ADP, and CrP, reflecting reductions in thetotal adenine nucleotide and creatine pools. (See below.) Lower ADP levels require a compensatoryincrease in inorganic phosphate to maintain ATP synthesis.
The ranges of values of cross-bridge cycle rate, ATP hydrolysis rate, and end-systolic and end-diastolic volumes are listed in Table 13.

Table 13. Output arguments for cardiovascular mechanic model

Variable Definition Units used in code Values
rate_of_XB_turn-over_ave Cross bridge cyclingrate sec−1 3.5874–5.3658 for sham2.606–5.4381 for TACx_ATPase ATP hydrolysis rate mmol·(sec·L·cell)−1 0.9301–1.392 for sham0.6758–1.410 for TACEDLV End diastolic left ven-tricular volume mL 0.303–0.547 for sham0.407–0.650 for TACESLV End systolic left ven-tricular volume mL 0.093 – 0.232 for sham0.138 – 0.423 for TACMAP Mean arterial pressure mmHg 93.3 for both TAC andsham

The set of input parameters invoked in the cardiovascular systems model is listed in Table 3.The input parameters TAN, CRtot, and Ox_capacity are all measured for each individual rat. TheATP hydrolysis rate (xAT P ase ) is predicted by the mechanics model (see above). The relationshipsbetween metabolite pools from Gao et al. (2019) are used to estimate the total exchangeable
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phosphate (TEP):
TEP = P0 − p ((A0 − TAN)/a)

where, P0 = 35.446 mmol·(L cell)−1, A0 = 10.26 mmol·(L cell)−1, are reference TEP and TAN values,
p = 0.283mmol·(L cell·year)−1 and a = 0.082mmol·(L cell·year)−1 are the slopes of the relationshipsbetween mean TEP and mean TAN and age in humans, respectively.
Output arguments from the energetics model, including the metabolite levels used in the me-chanics model, are listed in Table 4.
6.4 Predictions associated with changing metabolic/energetic parameterization:
The predictions illustrated in Fig. 9 of Lopez et al. (2020) are made by replacing the parametersrepresenting the metabolic state of sham control rats with those representing TAC rats and byreplacing the parameters representing the metabolic state of TAC rats with those representingsham control rats.
For predictions of how mechanical function in sham rats changes when the metabolic profile isreplaced with that of the average TAC rat (Fig. 9A - 9B Lopez et al. (2020)), the input metabolicparameters are set to:

TAN = 0.006976M
CRtot = 0.02303M
TEP = 0.02411M

Ox_capacity = 0.7482 (unitless)
Note that the above average TAC rat metabolite profile are based on n = 10 TAC rats. (TAC #7 isexcluded for reasons described in Lopez et al. (2020).)
Given these values specifying themetabolic model, the blood volume, kf or ce , and kSR are increasedso that the model-predicted mean arterial pressure was 93.3 mmHg. In other words, it is assumedthat baseline cardiac output and system pressure are maintained at the original physiological levelsvia compensatory increases in preload and myosin binding protein C phosphorylation. To obtainthe model predictions in Lopez et al. first the kf or ce and kSR are proportionately increased tocompensate for the metabolic dysfunction. If it is not possible to restore mean arterial pressure tothe physiological level with that change alone, blood volume is increased until the mean pressureof 93.3 mmHg is reached.
For predictions of how mechanical function in TAC rats changes when the metabolic profile isreplaced with that of the average sham rat (Fig. 9C - 9D), the input metabolic parameters are setto:

TAN = 0.007624M
CRtot = 0.03027M
TEP = 0.02635M

Ox_capacity = 1 (unitless)
Given these values specifying the metabolic model, the blood volume, kf or ce , and kSR , and Rs y sare adjusted so that the model-predicted mean arterial pressure is 93.3 mmHg and the predictedend-diastolic volume with mean sham metabolic parameters is equal to that of the original TACrat. In other words, it was assumed that baseline system pressure and diastolic filling level aremaintained at the original physiological levels via compensatory reduction in preload, myosinbinding protein C phosphorylation, and systemic resistance.
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7 Running the model
7.1 Summary of codes
The simulation package consists of 5 MATLAB files:

1. CardiovascualarMechanics.m
2. dXdT_CardiovascularMechanics.m
3. EnergeticsModelScript.m
4. dXdT_energetics.m
5. TrisegEquations.m

Values of all adjustable parameters are stored in spreadsheet files “Adjustable_paramaters_table_rest.xlsx”for the baseline simulations and “Adjustable_parameters_table_SWAP.xlsx” for simulations withreplaced metabolic parameters.
The CardiovascularMechanics.m function is the main driver to run the mechanics model for agiven animal. For instance, assigning the variable “rat_number” to 1 will execute simulations forSHAM rat number 1. Executing the script will load the parameters associated with this animal,run the cardiovascular systems model for 120 heart beats to attain a periodic steady state, andthen plot the predicted left ventricular pressure, aortic pressure, and arterial pressure along withthe left-ventricular pressure volume loop for this individual animal. The target end-diastolic andend-systolic volumes and the pres-sure drop across the TAC will be indicated by dashed lines inthe figures. The model will compute the predicted cross-bridge cycling rate in the LV free walland the associated ATP hydrolysis rate.
The energetics model for a given animal is called within the cardiovascular model. Executing thisscript will read the metabolic/energetic parameters associated with this animal and run the modelto calculate the cytosolic metabolite levels. Note the ATPase hydrolysis rate for steady state ispre-identified and is listed in column 9 of the input adjustable_parameters_table_rest.xlsx.
The numbering for rats in the input “data1.xlsx” file is as follows: the first 8 rats are SHAM ratsand rat number 9 is the mean sham rat; rat number 10 to 19 are the TAC rats (TAC rat# 7 isexcluded). Therefore the first TAC rat is rat number 10 in the simulations. For example, to simulatethe model for TAC rat #1 we need assign number 10 to the variable “rat_numbers = 10” in the
CardiovascularMehanics.m and run the code.
The model will generate output shown below in Fig. 5.

Figure 5. Model output for TAC rat #1.

In addition to the plots illustrated above, the running the model for this individual animal results ina predicted ATP hydrolysis rate of 0.675 mmole·sec−1·(L cell)−1. Note that the input ATP hydrolysisrate is the input parameters for the energetic model for this animal (column 9, rat number 10) ofthe adjustable variables in the input file “adjustable_parameters_table_rest.xlsx”) is equal to this
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value. Also note that the predicted values for MgATP_cytoplasm, MgADP_cytoplasm, and Pi_cytofrom the energetics model are equal to the associated input parameters for the mechanics modelfor this animal.
7.2 Reproduction of simulations highlighted in original paper
The procedure detailed above may be followed to reproduce the model fits to data for any ofthe individual TAC or sham rats analyzed in the original paper. For example, Fig. 7 of the originalpaper shows model fits to sham rat #3 and TAC rat #2. To simulate the model for sham rat #3 theuser assigns the number 3 to the variable “rat_numbers = 3” in the CardiovascularMehanics.m andruns the code. The resulting model output is equivalent to that presented in Fig. 7 panels A andB of the original paper.
To simulate the model for TAC rat #2 the user assigns the number 11 to the variable “rat_numbers= 11” in the CardiovascularMehanics.m and runs the code. The resulting model output is equivalentto that presented in Fig. 7 panels C and D of the original paper.
Fig. 9 of the original paper illustrates the predicted effects of replacing the metabolic profile ofsham rat with that of at TAC rat, and the predicted effects of replacing the metabolic profile ofa TAC rat with that of a sham rat. The solid lines in Fig. 9 of the original paper represent theresting-state simulations from Fig. 7 of the paper. The dashed lines correspond to simulationsassociated with the metabolite swaps.
To simulate the model for sham rat #3 with TAC metabolism settings the user assigns the number3 to the variable “rat_numbers = 3” in the CardiovascularMehanics.m and also assigns the number1 to the variable “flag_swap_metabolite = 1” and runs the code. The resulting model output isequivalent to that presented in Fig. 9 panels A and B of the original paper. To simulate the modelfor TAC rat #2 with sham metabolism settings the user assigns the number 11 to the variable“rat_numbers = 11” in the CardiovascularMehanics.m and also assigns the number 1 to the variable“flag_swap_metabolite = 1” and runs the code. The resulting model output is equivalent to thatpresented in Fig. 9 panels C and D of the original paper.
8 Glossary of model codes
EnergeticsModelScript.m: This function is used to compute the cellular energetics concentrationvariables for themyocardium, given input values ofmitochondrial oxidative capacity, TAN, TEP, andCRtot metabolite pool values, and the rate of cellular ATP hydrolysis. The function computes thesteady state of the cellular energetics model by simulating the model governed by the differentialequations in dXdT_energetics.m.
dXdT_energetics.m: This function is an implementation of the Bazil et al. (2016) model of ratmyocardial mitochondrial oxidative phosphorylation. The model has 29 state variables, listed inTable 1.
Cardiovascularmechanics.m: This function simulates the pressure and flows in the whole-bodycardio-vascular systems model of 1, governed by the five-compartment lumped-parametercardiovascular systems model coupled to the Lumens et al. TriSeg heart model. The inputs to themodel include the cytosolic metabolite concentrations predicted by EnergeticsModelScript.m. Theoutputs of the model are the myocardial ATP hydrolysis rate (used as an input for the energeticsmodel) and the cardiovascular variables, EDLV, ESLV, MAP, rate of ATP cellular hydrolysis, to becompared to measurements for individual rats.
dXdT_cardiovascular_mechanics.m: This function is an implantation of the whole organ cardio-vasucalar mechanics model. The model has 47 state variables listed in Tables 5, 8, and 10.
TriSeg.m: This function runs the TriSeg model equations to obtain estimates for initial value forODE solver and the associated algebraic equations.
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Curation outcome summary: Successfully reproduced Figure 7 and Figure 9 of the original paper and Figure 5
of the Physiome manuscript.

Box 1: Criteria for repeatability and reproducibility

Model source code provided:

Source code: a standard procedural language is used (e.g. MATLAB, Python, C)

There are details/documentation on how the source code was compiled
There are details on how to run the code in the provided documentation
The initial conditions are provided for each of the simulations
Details for creating reported graphical results from the simulation results

Source code: a declarative language is used (e.g. SBML, CellML, NeuroML)

The algorithms used are defined or cited in previous articles
The algorithm parameters are defined
Post-processing of the results are described in sufficient detail

Executable model provided:

The model is executable without source (e.g. desktop application, compiled code, online service)

There are sufficient details to repeat the required simulation experiments

The model is described mathematically in the article(s):

Equations representing the biological system

There are tables or lists of parameter values

There are tables or lists of initial conditions

Machine-readable tables of parameter values

Machine-readable tables of initial conditions

The simulation experiments using the model are described mathematically in the article:

Integration algorithms used are defined

Stochastic algorithms used are defined

Random number generator algorithms used are defined

Parameter fitting algorithms are defined

The paper indicates how the algorithms yield the desired output
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Box 2: Criteria for accessibility

Model/source code is available at a public repository or researcher’s web site

Prohibitive license provided

Permissive license provided

Open-source license provided

All initial conditions and parameters are provided

All simulation experiments are fully defined (events listed, collection times and measurements
specified, algorithms provided, simulator specified, etc.)

Box 3: Rules for Credible practice of Modeling and Simulationa

aModel credibility is assessed using the Interagency Modeling and Ananlysis Group conformance rubric:
https://www.imagwiki.nibib.nih.gov/content/10-simple-rules-conformance-rubric

Define context clearly: Extensive

Use appropriate data: Extensive

Evaluate within context: Extensive

List limitations explicitly: Insufficient

Use version control: Adequate

Document adequately: Extensive

Conform to standards: Insufficient

Box 4: Evaluation

Model and its simulations could be repeated using provided declarative or procedural code

Model and its simulations could be reproduced
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Summary comments: Details of the model are provided in the Supplemental Materials and codes were made
available via a Github link provided (https://github.com/beards-lab/Rat-Cardiac-Energetic). These were used in our
attempt to reproduce the results presented in the manuscript. We were able to successfully reproduce Figure 7 and
Figure 9 of the original paper and Figure 5 of the Physiome manuscript, after following the instructions described
in this paper.
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