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REVIEW

AbstractThe classic Boron and De Weer (1976) paper provided the first evidence of active regulationof pH in cells by an energy-dependent acid-base transporter. These authors also developed aquantitative model — comprising passive fluxes of acid-base equivalents across the cell membrane,intracellular reactions, and an active transport mechanism in the cell membrane (modelled as aproton pump) — to help interpret their measurements of intracellular pH under perturbations ofboth extracellular CO2/HCO−3 and extracellular NH3/NH+
4 . This Physiome paper seeks tomake thatmodel, and the experimental conditions under which it was developed, available in a reproducibleand well-documented form, along with a software implementation that makes the model easy touse and understand. We have also taken the opportunity to update some of the units used inthe original paper, and to provide a few parameter values that were missing in the original paper.Finally, we provide an historical background to the Boron and De Weer (1976) proposal for activepH regulation and a commentary on subsequent work that has enriched our understanding ofthis most basic aspect of cellular physiology.
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1 Introduction
In 1976 Boron & De Weer published their landmark paper on “Intracellular pH transients in squidgiant axons caused by CO2, NH3, and metabolic inhibitors” (Boron and De Weer, 1976). Theauthors used a squid giant axon preparation and a mathematical model of pH buffering and thetransport of protons, bicarbonate (HCO−3 ) and CO2 to establish the experimental evidence foractive regulation of intracellular pH (pHi) by a transporter in the plasma membrane that — atthe expense of energy — either moves acid out of the cell, or base into the cell. Today, we referto such a transporter generically as an acid-extrusion mechanism. For simplicity, Boron & DeWeer modelled it as a proton pump, although the result would have been almost indistinguishablehad they modelled it as the uptake of HCO−3 or carbonate (CO2−

3 ). The paper reported on theconsequences of adding and then removing extracellular CO2/HCO−3 , NH3/NH+
4 (where NH+

4 isammonium), or the metabolic inhibitors, cyanide, azide and dinitrophenol (DNP).
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In the first experiment, following exposure of the cell to elevated CO2 and HCO−3 , CO2 rapidlyenters the cell and intracellular CO2 equilibrates with the extracellular CO2, and generates intracel-lular H+ and HCO−3 via the CO2 hydration reaction (CO2+H2O −→ H++HCO−3 ). The accumulatingH+ results in a rapid fall of pHi (see Figure 1A & Figure 1B). To the extent that the membraneis permeable to HCO−3 as well as to CO2, HCO−3 will initially enter the cell passively, along itselectrochemical gradient. Soon, however, the accumulation of intracellular HCO−3 reverses theHCO−3 electrochemical gradient and would be expected to lead to the passive efflux of HCO−3 .This loss of cellular HCO−3 would tend to acidify the cell because — to replenish the lost HCO−3 —additional CO2 would enter the cell and form even more H+ and HCO−3 (the passive CO2/HCO−3shuttle). Thus, the expectation was that prolonged exposure to CO2 would cause pHi to fallrapidly (passive influx of CO2) and then to drift more slowly in the acidic direction (passive effluxof HCO−3 ). In fact, Boron & De Weer observed an alkaline drift, leading to the postulate of active
extrusion of H+ — or an equivalent process1 — at a rate that exceeds the passive shuttling by theCO2/HCO−3 couple (see Figure 1A & Figure 1C).

Figure 1. pHi changes caused by prolonged exposure of a squid giant axon to extracellularCO2/HCO−3 in the bulk solution. (A) Original pHi andVm traces from figure 1 of BDW.
Exposing an axon to extracellular CO2/HCO−3 causes a rapid fall in pHi followed by a slow and

sustained plateau-phase pHi recovery (i.e., pHi rises). Removing extracellular CO2/HCO−3
causes pHi to overshoot its initial resting value. Both the plateau-phase recovery (short arrow)

and the overshoot (long arrow) are indicative of net acid extrusion during the period ofCO2/HCO−3 exposure. (B) Cartoon illustrating the processes underlying the initial, rapid
acidification phase in (A). The entry of CO2 leads to the intracellular production of H+ (and
thus to the observed pHi decay) via the reaction CO2 +H2O −→ H+ +HCO−3 . (C) Cartoon
illustrating the processes underlying the plateau-phase alkalinisation in (A). After CO2

equilibration across the plasma membrane (pHi nadir in panel (A)), the slow entry of HCO−3
(or, equivalently, the slow exit of H+) — which has always been present but was overwhelmed
by the influx of CO2 — leads to the consumption of H+ (and thus to the observed slow pHi rise)
via the reaction H+ +HCO−3 −→ CO2 +H2O. The newly formed CO2 then exits the cell. The

observed pHi overshoot is the result of the accumulation of HCO−3 during exposure to
extracellular CO2/HCO−3 . BDW used the mathematical model to postulate the presence of an
active acid-extrusion mechanism that would explain both the observed plateau-phase pHi
recovery and the pHi overshoot. (A), modified from Boron and De Weer (1976). (B)-(C),

modified from Boron (2010).

Following removal of external CO2, intracellular CO2 diffuses out, while intracellular HCO−3 com-bines with H+ to leave the cell as CO2. Thus, the entire intracellular H+ load associated with
1Of course, other energy-requiring processes — as yet undiscovered at the time — could also have accounted for thepHi increase.
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CO2 entry would be removed, returning pHi to its value before the addition of CO2/HCO−3 (orto a slightly lower value, to the extent that HCO−3 had passively exited during the CO2/HCO−3exposure). In fact, Boron & De Weer observed that pHi overshoots its resting value by anamount consistent with the net removal of H+ by the active, acid-extrusion mechanism duringthe CO2/HCO−3 exposure (see Figure 1A & Figure 1C).
In the second experiment, following exposure of the cell to extracellular NH3/NH+

4 in the formof NH4Cl (ammonium chloride), the intracellular environment rapidly becomes alkaline as NH3enters and combines with H+ to form NH+
4 (equivalent to the hydration of NH3 to form NH+

4and OH−). If this were the entire story, then pHi would rise monotonically to a relatively alkalinevalue, and then the subsequent removal of NH4Cl would cause pHi to fall to precisely its initialvalue. In fact, Boron & De Weer observed that the exposure to NH4Cl causes pHi to rise rapidlyand then fall slowly. Moreover, the subsequent removal of NH3/NH+
4 causes pHi to undershootits original value (see Figure 2A). Thus, Boron & De Weer postulated that, during the NH3/NH+

4exposure, NH+
4 passively enters the cell down its electrochemical gradient. Early during theexposure, this NH+

4 influx would oppose the NH3 entry and slightly reduce the pHi increase. Laterduring the NH4Cl exposure, after intracellular [NH3] rises to match extracellular [NH3] ([NH3]o),the continued passive influx of NH+
4 would generate intracellular H+ and NH3. The result wouldbe a slow fall of pHi and a rise in intracellular [NH3], the latter leading to the passive exit of NH3(the passive NH3/NH+

4 shuttle, see Figure 2A & Figure 2B). The experimental data are consistentwith the proposed mathematical model.
Finally, exposure of the cells — in turn — to cyanide, DNP and azide resulted in intracellularacidosis, consistent with the accumulation of acid metabolites.
In the present paper, we re-formulate the models from Boron and De Weer (1976), henceforthreferred to as ‘BDW’, and specify the simulation using the Physiome modelling standards CellML(Cuellar et al., 2003) and SED-ML (Bergmann et al., 2017) in order to ensure that the modelreproduces the graphs in the original paper and that the model is fully curated.2 Note that thiseffort requires the specification of some parameters used in BDW’s simulations, but not describedin the BDW paper. The curated and annotated model is made available in a form that users canrun with OpenCOR3 to understand the model and to explore the effect of changes in parametervalues.
2 pH Buffering by Weak Acids and Weak Bases
We begin by reviewing a few rudimentary concepts of pH buffering by weak acids and bases(Roos and Boron, 1981; Bevensee and Boron, 2013; Boron and Boulpaep, 2016) to provide thebackground for understanding the derivation and implementation of the BDW model.
Buffers. According to Brönsted’s definition (Brönsted, 1923), an acid is any substance that candonate a H+. Conversely, a base is any substance that can accept a H+. A buffer is any substancethat can reversibly consume or produce H+, thereby minimising changes in pH.
The dissociation of the uncharged weak acid (HA) to the anionic weak base (A−) is described bythe equilibrium reaction:

HA 
 A− +H+ (1)
which is governed by the equilibrium constant4

KHA = [A−] [H+]
[HA] . (2)

An example is the carbonic acid (H2CO3) dissociation reaction,
H2CO3 
 HCO−3 +H+.

2https://models.physiomeproject.org/workspace/5f83www.opencor.ws4Note that [A− ] denotes a concentration in units of mol ·m−3 or mM.
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Figure 2. pHi changes caused by a short and a long exposure of a squid giant axon to
extracellular NH3/NH+

4 in the bulk solution. (A) Original pHi andVm traces from figure 2 of
BDW. A short exposure of the axon to extracellular NH3/NH+

4 causes a rapid rise in pHi,
followed by a pHi decay that modestly undershoots (lower short arrow) its initial resting value
upon removal of extracellularNH3/NH+

4 . A longer exposure of squid giant axons to extracellularNH3/NH+
4 causes a rapid rise in pHi, followed by a slow and sustained pHi decay. Removing

extracellular NH3/NH+
4 causes pHi to undershoot substantially its initial resting value (long

arrow). Both the plateau-phase acidification (upper short arrow) and the undershoot (long
arrow) are indicative of net acid loading during the period of NH3/NH+

4 exposure. (B) Cartoon
illustrating the processes underlying the initial alkalinisation phase in (A) for both short and
long exposures to extracellular NH3/NH+

4 . The initial entry of NH3 leads to the intracellular
consumption of H+ (and thus to the observed pHi rise) via the reaction NH3 +H+ −→ NH+

4 . (C)
Cartoon illustrating the processes underlying the plateau-phase acidification during the longNH3/NH+

4 exposure in (A). After NH3 equilibration across the plasma membrane (pHi peak in
panel (A)), the slow entry of NH+

4 —which has always been present but overwhelmed by the
influx of NH3 — leads to the production of H+ (and thus to the observed slow pHi decay during
the plateau phase) via the reaction NH+

4 −→ NH3 +H+. The newly formed NH3 then exits the
cell. The pHi undershoots observed upon removal of extracellular NH3/NH+

4 , during both short
and long NH3/NH+

4 exposures, are the result of the accumulation of NH+
4 during exposure to

extracellular NH3/NH+
4 . BDW used the mathematical model to postulate the above sequence of

events, including both the plateau-phase acidification and the pHi undershoot. (A), modified
from Boron and De Weer (1976). (B)-(C), modified from Boron (2010).

The total weak acid concentration, [TA], is the sum of [HA] and [A−]. Note that [TA] is one ofthe two main unknowns in the BDW model for weak acids.
The dissociation of the cationic weak acid (BH+) to the uncharged weak base (B) is described bythe equilibrium reaction,

BH+ 
 B +H+, (3)
where the equilibrium constant is

KBH = [B] [H+]
[BH+] . (4)

An example is the NH+
4 dissociation reaction,

NH+
4 
 NH3 +H+.

The total weak base concentration, [TB], is the sum of [BH+] and [B]. Note that [TB] is one ofthe two main unknowns in the BDW model for weak bases.
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The CO2/HCO−3 buffer pair. The formation of HCO−3 and H+ from CO2 by hydration is given bythe equilibrium reaction
CO2 +H2O 
 HCO−3 +H+,

where the equilibrium constant is
KCO2

=
[HCO−3 ] [H+]
[CO2]

. (5)
Taking logarithms of both sides of Equation 5, and recognising from Henry’s law that

[CO2] = s · pCO2
, (6)

where s is the solubility coefficient for CO2 and pCO2
is the partial pressure of CO2, we obtain thefamiliar Henderson-Hasselbalch equation

pH = pKCO2
+ log [HCO−3 ]

s · pCO2

. (7)
Here, pH = − log[H+]5 and pKCO2

= − log(KCO2
).

In terms of the nomenclature above, one might regard CO2 as the weak acid HA6, and HCO−3 asits conjugate base A−.
Buffering power (β ). By definition, β is the amount of strong base (e.g., NaOH), or the negative ofthe amount of strong acid (e.g., HCl), that one must add to 1 L of solution to raise pH by one pHunit:

β =
∆[Strong Base]

∆pH = −∆[Strong Acid]
∆pH . (8)

The units of β are mM. For additional details, refer to Roos and Boron (1981); Boron and Boulpaep(2016). Note that BDW defined β as a negative number, as did Koppel and Spiro in their originaldefinition of buffering (Koppel, 1914; Roos and Boron, 1980), rather than as a now-conventionalpositive quantity, as did Van Slyke in his later work (Van Slyke, 1922). BDW’s definition, whichthey consistently applied, has no effect on the outcome of their simulations. In the presentpaper, we will follow the definition of Van Slyke — defining β as a positive number — and makeappropriate sign changes to the derived equations.
3 TheBoron&DeWeerModel for the Permeation by anUnchargedWeakAcid
and its Conjugate, Anionic Weak Base

The BDW mathematical model consists of two time-dependent ordinary differential equations(ODEs), one describing the time-course of the concentration of total intracellular buffer ([TA]i =
[HA]i + [A−]i) and the other the time-course of the intracellular free H+ concentration (whichis related to pHi). BDW derived these two equations for the general cases in which any bufferpair HA/A−, or any buffer pair B/BH+, can move passively across the plasma membrane of aprototype cell. Then, they applied these two general equations to their specific experimentalconditions, namely exposure of a cell (a squid giant axon) to equilibrated extracellular CO2/HCO−3or to equilibrated extracellular NH3/NH+

4 .
Here, following BDW’s approach, we begin by deriving the equations for HA/A−. In the nextsection, we apply the same general formalism to B/BH+.

5The definition of pH as a pH scale based on powers of 10 was introduced by Sørensen in an attempt to simplify thenotation of [H+ ] and to avoid having to resort to decimals for tiny amounts of [H+ ] (Sørensen, 1909).6Note that although CO2 is often regarded as an acid, the true weak acid is H2CO3, the product of the reaction ofCO2 with H2O.
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Derivation for weak acids. Imagine that a cell is exposed to a solution containing equilibratedHA/A− and that both HA and A− initially move into the cell — because of the chemical gradientin the case of HA, and because of the electrochemical gradient in the case of A−.
An integrated form of Fick’s first law of diffusion describes the net passive influx7 of HA (JHA)

JHA = PHA
(
[HA]o − [HA]i), (9)

where JHA is flux (mol ·m−2 · s−1) and PHA (m · s−1) is the membrane permeability to the unchargedweak acid HA. Note that this is a passive diffusion equation because HA is uncharged.
The constant field equation — also known as the Goldman, Hodgkin, Katz (GHK) (Goldman, 1943;Hodgkin and Huxley, 1952) equation — describes the net passive influx of A− (JA− ):

JA− = PA−
(
VmF
RT

) (
[A−]o − ε [A−]i

1 − ε

)
, (10)

where PA− (m · s−1) is the membrane permeability to the charged conjugate base A−,Vm is themembrane potential (intracellular relative to extracellular potential), and ε is a shorthand for
e−VmF /RT . Note that JHA and JA− have units of mol ·m−2 · s−1.
Although HA and A− can interconvert in the cytosol, BDW assumed that the intracellular concen-tration of total weak acid [TA]i only can change due to the transmembrane fluxes of HA and A−(see Figure 3). Thus, the time rate of change of [TA]i is

d[TA]idt = ρ (JHA + JA− ) , (11)
where ρ (m−1) is the area-to-volume ratio for the cell, and converts the transmembrane flux perunit area (in units of mol ·m−2 · s−1) to a time rate of change per unit cell volume (mol ·m−3 · s−1or mM · s−1). Equation 11 is the first of two ODEs of the BDW model for the buffer pair HA/A−.

Figure 3. Cartoon illustrating the main assumptions in the BDWmodel of permeating
uncharged weak acid HA and its conjugate anionic weak base A−. The BDWmodel consists of

two time-dependent ODEs. The first one describes the time-course of the intracellular
concentration of total weak acid [TA]i, and the second one describes the time-course of [H+]i.
BDW assumed that [TA]i changes in time because of the transmembrane fluxes of HA (JHA) —
modelled according to Fick’s first law of diffusion — and A− (JA−) — modelled according to the
Goldman, Hodgkin, Katz (GHK) equation. According to BDW, the time rate of change of [H+]i
depends on the net rate dQ/dt at which acids are added into the cytosol. BDW assumed thatdQ/dt depends on (i) the release of H+ by some fraction x of the entering HA (i.e., xJHA), (ii)
the consumption of H+ by some fraction y of the entering A− (i.e., y JA−), and (iii) the additional

rate of intracellular H+ consumption via metabolism or active acid extrusion (JH+).

Later, Bevensee and Boron defined the time rate of change per unit volume (e.g., d[TA]i/dt) as a‘pseudoflux’ φ, with the area-to-volume ratio folded into the value of φ (Bevensee and Boron,
7BDW used M to denote a transmembrane flux. In the present paper, we use the more widely used notation J .
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2013). Physiologists sometimes prefer to present experimental data in terms of pseudofluxbecause most mammalian cells often have complex geometries that make it difficult to estimatesurface area.
In deriving the second ODE of their model, BDW started by noting that the time rate of changeof free protons, d[H+]i/dt , depends on the rate at which acids are added into the cytosol per unitvolume and per unit time — denoted dQ/dt (mol ·m−3 · s−1) where Q is the total intracellular acidcontent. Like d[TA]i/dt , both d[H+]i/dt and dQ/dt are pseudofluxes.
In their simple system of a squid giant axon exposed to CO2 (i.e., HA) and HCO−3 (i.e., A−), BDWassumed that only three general processes affect dQ/dt : (i) the release of H+ by some fraction (x )of the entering HA (i.e., xJHA), (ii) the consumption of H+ by some fraction (y ) of the enteringA− (i.e., y JA− ), and (iii) the “additional” rate of intracellular consumption or active extrusion of H+

(JH+ ; see Figure 3) above the fixed background rate of H+ extrusion necessary to balance thefixed background rate of acid loading (i.e., addition of H+ or equivalent acid, or removal of OH−or equivalent base) in the absence of HA/A−. Thus,
dQ
dt = ρ (xJHA − y JA− − JH+ ) . (12)

A critical insight by BDW is that during each infinitesimal increment in time during which a bolusof HA enters the cell, the entering HA redistributes itself between HA (and H+) vs A−, accordingto the pre-existing ratios [HA]i/[TA]i and [A−]i/[TA]i. Thus, the fraction y of entering HA thatremains HA is
y =
[HA]i
[TA]i =

[HA]i
[HA]i + [A−]i . (13)

This is also the fraction of entering A− that combines with H+ and becomes HA. Combining theabove expression with Equation 2,
y =

[HA]i
[HA]i + [A−]i =

[H+]i
[H+]i + KHA = α , (14)

which BDW defined as α . Conversely, the fraction x of A− that remains A− is
x =

[A−]i
[HA]i + [A−]i . (15)

This is also the fraction of entering HA that dissociates to form A− and H+. Combining the aboveexpression with Equation 2,
x =

[A−]i
[HA]i + [A−]i =

KHA
[H+]i + KHA = 1 − α . (16)

In summary, Equation 12 becomes:
dQ
dt = ρ

(
(1 − α)JHA − αJA− − JH+

)
. (17)

BDW modelled JH+ (mol ·m−2 · s−1) as the additional proton-extrusion rate above the fixed back-ground rate

JH+ =


k

ρ

(
[H+]i − [H+] ′i

) pHi < pH′i ,
0 otherwise, (18)

where k (s−1) is the proton-pumping rate constant, (k /ρ) [H+]i is the additional flux of H+ abovethe background H+ flux of (k /ρ) [H+] ′i , which occurs at the resting [H+]i of [H+] ′i (i.e., resting pHi
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of pH′i ). Note that k /ρ has units of (m · s−1), consistent with the membrane permeability terms
PHA and PA− in Equation 9 and Equation 10.8
The BDW authors used the definition of buffering power, in its infinitesimal form, to derive therelation between d[H+]i/dt and dQ/dt , as shown in the following steps.
Our first goal is to obtain an expression for dpH/dt in terms of dQ/dt . According to the chainrule:

dpH
dt =

(dpH
dQ

) (dQ
dt

)
. (19)

By definition (see Equation 8), β = −dQ/dpH (mol ·m−3), or equivalently
dpH
dQ = − 1

β
. (20)

Combining Equation 19 and Equation 20
dpH
dt =

(
− 1
β

) (dQ
dt

)
. (21)

Our next goal is to obtain an expression for dpHdt in terms of d[H+]idt . According to the chain rule:
dpH
dt =

( dpH
d[H+]i

) (d[H+]idt
)
. (22)

By definition, pH = − ln [H+]i/2.303, so that:
dpH
d[H+]i = −

1

2.303[H+]i . (23)
Combining Equation 22 and Equation 23, we have

dpH
dt =

(
− 1

2.303[H+]i
) (d[H+]idt

)
, (24)

or equivalently,
d[H+]idt = −2.303[H+]i

(dpH
dt

)
. (25)

Substituting Equation 21 into Equation 25, we obtain
d[H+]idt =

(
2.303[H+]i

β

) (dQ
dt

)
. (26)

Finally, substituting Equation 17 into Equation 26,
d[H+]idt =

(
2.303[H+]i

β

)
ρ
(
(1 − α)JHA − αJA− − JH+

)
, (27)

which is the second equation of the BDW model.
Substituting for α (from Equation 14), [HA]i = α [TA]i, [A−]i = (1 − α) [TA]i, in Equation 11 andEquation 27, we obtain the two ODEs of the BDW model in terms of [TA]i and [H+]i:

d[TA]idt = ρ (JHA + JA− ) , (28)
8In the BDW paper, the final equation before the Appendix had a typographical error, omitting the ρ in the followingequation: MH = (k /ρ) ( [H+ ] − [H+ ]′) , where MH is a flux (today represented as JH). Indeed, WFB had included ρ in hisextant Fortran code.
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d[H+]idt =

(
2.303[H+]i

β

)
ρ

((
KHA

[H+]i + KHA
)
JHA −

(
[H+]i

[H+]i + KHA
)
JA− − JH+

)
, (29)

where JHA (from Equation 9), and JA− (from Equation 10) are given by:
JHA = PHA

(
[HA]o − [H+]i

[H+]i + KHA [TA]i
)
,

JA− = PA−
(
VmF
RT

) ©«
[A−]o − KHA

[H+]i + KHA [TA]iε
1 − ε

ª®®®¬ ,
and JH+ is given by Equation 18.
The numerical solution of the above two equations yields the time courses of [TA]i and [H+]i,which in turn yield the time-courses of [HA]i and [A−]i via:

[HA]i = α [TA]i, (30)

[A−]i = (1 − α) [TA]i, (31)
where

α =
[H+]i

[H+]i + KHA . (32)

Simulation for CO2/HCO−3 experiments. BDW employed Equation 28 and Equation 29 to simulatethe experiments in which they exposed a squid giant axon to a solution containing equilibratedCO2/HCO−3 . Their simulation protocol was a step change in (a) extracellular pCO2
from 0 to 5%CO2(37 mmHg or, with s = 0.0321 mM ·mmHg−1, [CO2]o = s .pCO2

= 1.1877 mM) and (b) extracellular
[HCO−3 ] from 0 to 59.5260 mM (the value that [HCO−3 ]o has in a solution containing 5% CO2 atpHo of 7.70)9. The step change is applied for 2700 s (45 min) at constant pHo = 7.70.
Table 1 and Table 2 report the parameter values used by BDW. Table 1 provides parametervalues that are common to both the CO2/HCO−3 and the NH3/NH+

4 experiments. Table 2 providesparameter values exclusive to the CO2/HCO−3 experiments only.
In the present work, the differential Equation 28 and Equation 29 — when coded in CellML andsolved with OpenCOR — produce the plots in Figure 4. The simulation file Boron-CO2.sedmlcontains the computational setting for running the model. Open the .sedml file in OpenCOR andclick Run Simulation. The initial conditions are [TA]i = 0 mM and pHi = 7.40. Note that Figure 4illustrates the time courses not only of pHi — as presented by BDW — but also of quantities(e.g., various solute concentrations and fluxes) not displayed in the original paper; these valuesare useful for understanding the processes that contribute to the pHi transient. Moreover, ourcurated and annotated version of the BDW model also allows one to alter the parameter valuesfrom those originally chosen by BDW, thereby extending the ability of the user to investigate thepredictive power of the computational model.

9BDW arrived at the value [HCO−3 ]o = 59.5260mM by rearranging the equilibrium relation for CO2/HCO−3 outside the
cell: [HCO−3 ]o = KCO2 [CO2 ]o

[H+ ]o = 59.5260 mM, when KCO2 = 1 × 10−3 mM (or equivalently, pKCO2 = − log(KCO2 ) = 6.0),
[CO2 ]o = 1.1877 and pHo = 7.70.
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Table 1. Parameter values used in both simulations of squid-axon CO2/HCO−3 experiments andNH3/NH+
4 experiments.

Symbol Name BDW Value Unit New Value Unit
T temperature 23 (296.15) °C (°K)
R gas constant 8.314 J ·mol−1 · K−1
F Faraday constant 96485 C ·mol−1
ρ area/volume ratio 0.0081 µm−1 8000 m−1

pHo extracellular pH 7.70

1 Note that BDW did not report the value of ρ, but rather the value of the fiber(i.e., axon) diameter, which is equal to 500 µm and corresponds to a ρ of 0.008
µm−1 or 8000 m−1.

Table 2. Parameter values for simulations of squid-axon CO2/HCO−3 experiments.

Symbol Name BDW Value Unit New Value Unit
βCO2

buffering power −26 mM 26 mM
s solubility constant for CO2 0.0321 1 mM/mmHg 0.241 mM/KPa

pCO2
partial pressure of CO2 37 mmHg 4.933 KPa

pCO2
partial pressure of CO2 37 mmHg 4.933 KPa

[CO2]o extracellular CO2 1.1877 mM
[HCO−3 ]o extracellular HCO−3 59.5260 mM
PCO2

membrane permeability 6 × 10−3 cm · s−1 6 × 10−5 m · s−1
PHCO−3 membrane permeability 5 × 10−7 cm · s−1 5 × 10−9 m · s−1
KCO2

acid dissociation constant 10−3 mM
pKCO2

acid dissociation constant 6.0

Vm membrane potential −57 2 mV −0.057 V
k H+ pump rate constant 0 − 300 3 s−1
pHi intracellular pH 7.40

pH′i basal pH 7.30 4
1 Note that BDW did not report the value of s . This value is inferred from a pCO2

of 37 mmHg(reported in the legend of BDW’s figure 6) and a [CO2]o of 1.1877 mM (in the original Fortrancode). Although BDW reported a value for s of 0.0346 mM/mmHg (taken from Harned andDavis (1943), referring to 0.5M NaCl at 20°C), they used this value only for the Davenportdiagram in their figure 5A.2 BDW did not report the value ofVm, but in the Fortran code, used −57 mV, which matchedthe measured mean value.3 In figure 6A of the BDW paper, the proton pumping rate constant (k ) had values of 0, 10, 75,
150, or 300 s−1.4 BDW did not report this value, but in their code used 7.30.
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Figure 4. Solution of the BDWmodel during and following a 2700 s period of externally
applied CO2. In these simulations pHo = 7.70 and [HCO−3 ]o is determined from the equilibrium
with [H+]o and CO2 (footnote 9). Note that, during the plateau phase, [HCO−3 ]i continues to

rise as pHi rises at a constant [CO2]i (the proton pumping rate k is set to 300 s−1, thus
k /ρ = 0.0375 m · s−1). Note also that, after the removal of CO2/HCO−3 , pHi rises to a higher

value (∼ 8.15) than its starting value (∼ 7.4), indicating the net extrusion of acid from the cell
during the CO2/HCO−3 exposure.
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4 TheBoron&DeWeerModel for the Permeation by anUnchargedWeakBase
and its Conjugate, Cationic Weak Acid

Following an approach analogous to the one outlined above for weak acids, BDWderived two time-dependent ODEs. The first describes the time-course of the concentration of total intracellularbuffer ([TB]i = [B]i + [BH+]i), and the other the time-course of the intracellular free [H+]i, forany buffer pair B/BH+.
Derivation for weak bases. Imagine that a cell is exposed to a solution containing equilibratedB/BH+, and that both B and BH+ initially move into the cell — because of the chemical gradientin the case of B, and because of the electrochemical gradient in the case of BH+.

Figure 5. Cartoon illustrating the main assumptions in the BDWmodel of permeating
uncharged weak base B and its conjugate anionic weak acid BH+. The BDWmodel consists of

two time-dependent ODEs. The first one describes the time-course of the intracellular
concentration of total weak base [TB]i, and the second one describes the time-course of [H+]i.
BDW assumed that [TB]i changes in time because of the transmembrane fluxes of HA (JB) —
modelled according to Fick’s first law of diffusion — and BH+ (JBH+) — modelled according to
the Goldman, Hodgkin, Katz (GHK) equation. According to BDW, the time rate of change of
[H+]i depends on the net rate dQ/dt at which acids are added into the cytosol. BDW assumed
that dQ/dt depends on (i) the release of H+ by some fraction x of the entering BH+ (i.e., xJBH+),

(ii) the consumption of H+ by some fraction y of the entering B (i.e., y JB), and (iii) the
additional rate of intracellular H+ consumption via metabolism or active acid extrusion (JH+).

Assuming, as in Figure 5, that [TB]i only can change due to the transmembrane fluxes of B (JB)and BH+ (JBH+ ), the time rate of change of [TB]i] — analogous to Equation 11 above — is
d[TB]idt = ρ (JB + JBH+ ) , (33)

where ρ (m−1) is again the area-to-volume ratio for the cell. The equation
JB = PB

(
[B]o − [B]i), (34)

is an integrated form of Fick’s first law of diffusion that describes the net passive flux of B, and
JBH+ = PBH+

(
VmF
RT

) (
[BH+]o − ε ′[BH+]i

ε ′ − 1

)
, (35)

describes the net passive influx of BH+ according to the GHK equation. In the previous twoequations, PB (m · s−1) is the membrane permeability to the uncharged weak base B, PBH+ (m · s−1)is the membrane permeability to the charged conjugate weak acid BH+, and ε ′ is a shorthand for
eVmF /RT . Equation 33 is the first of two ODEs of the BDW model for the buffer pair B/BH+.
The second equation of the BDW model for a weak base — analogous to Equation 27 above — is

d[H+]idt =

(
2.303[H+]i

β

)
ρ
(
(1 − α)JBH+ − αJB − JH+

)
, (36)
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where JH+ is the same as in Equation 18 and
α =

[BH+]i
[BH+]i + [B]i =

[H+]i
[H+]i + KBH+

, (37)
and

1 − α = [B]i
[BH+]i + [B]i =

KBH+

[H+]i + KBH+
. (38)

Substituting for α , [BH+]i = α [TB]i, [B]i = (1 − α) [TB]i, JBH+ , JB in Equation 33 and Equation 36,we obtain the two ODEs of the BDW model in terms of [TB]i and [H+]i
d[TB]idt = ρ (JB + JBH+ ) , (39)

d[H+]idt =
2.303[H+]i

β
ρ

((
KBH+

[H+]i + KBH+

)
JBH+ −

(
[H+]i

[H+]i + KBH+

)
JB − JH+

)
, (40)

where

JBH+ = PBH+

(
VmF
RT

) ©«
[BH+]o − [H+]i

[H+]i + KBH+
[TB]iε ′

ε ′ − 1

ª®®®¬ ,
JB = PB

(
[B]o − KBH+

[H+]i + KBH+
[TB]i

)
,

and JH+ is given by Equation 18.
Numerically integrating the above two equations yields the time courses of [TB]i and [H+]i, fromwhich we can compute the time-courses of [BH+]i and [B]i from

[BH+]i = α [TB]i, (41)

[B]i = (1 − α) [TB]i, (42)
where

α =
[H+]i

[H+]i + KBH+
. (43)

Simulation for NH3/NH+4 experiments. BDW employed Equation 39 and Equation 40 to simulatethe experiments in which they exposed a squid giant axon to equilibrated NH3/NH+
4 . Theirsimulation protocol was a step change in extracellular NH4Cl from 0 to 9 mM (that is, a stepchange in [NH+

4 ]o from 0 to 8.86mM, and in [NH3]i from 0 to 0.14mM) applied for 1500 s (25min)at constant pHo = 7.70.10
Table 1 and Table 3 report the parameter values used by BDW. Note that in the NH3/NH+

4simulations, k is always zero, that is, JH+ does not affect these processes.
The differential Equation 39 and Equation 40 — when coded in CellML and solved with OpenCOR— produce the plots in Figure 6. The simulation file Boron-NH3.sedml contains the computationalsetting for running the model. Open the .sedml file in OpenCOR and click Run Simulation. Theinitial conditions are [TB]i = 0 mM and pHi = 7.32.

10BDW arrived at the value [NH+4 ]o = 8.86 mM by rearranging the equilibrium relation outside the cell: [NH+4 ]o =
[H+ ]o [TB]o

[H+ ]o + KNH+
4

= 8.86 mM, when [TB]o = 9 mM, pHo = 7.70, and KNH+
4
= 3.16 × 10−7 mM (or equivalently,

pK = 9.50). The extracellular NH3 concentration can be obtained as [NH3 ]o = [TB]o − [NH+4 ]o = 9 − 8.86 = 0.14 mM
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Table 3. Parameter values for simulations of squid-axon NH3/NH+
4 experiments.

Symbol Name BDW Value Unit New Value Unit
βNH+

4
buffering power −9 mM 9 mM

[TB]o extracellular total ammonia 9 1 mM
[NH3]o extracellular NH3 0.1404 mM
[NH+

4 ]o extracellular NH+
4 8.8596 mM

PNH3
membrane permeability 6 × 10−3 cm · s−1 6 × 10−5 m · s−1

PNH+
4

membrane permeability 0 − 1 × 10−4 2 cm · s−1 1 × 10−6 m · s−1
KNH+

4
acid dissociation constant 0.31623 × 10−6 mM

pKNH+
4

acid dissociation constant 9.5

Vm membrane potential −55 3 mV −0.055 V
k H+ pump rate constant 0 s−1
pHi intracellular pH 7.32 4

1 In their original Fortran code that generated the plots in their figure 6B, BDW used
[TB]o = 9mM (the value used in some of their early experiments), and not 10 mM as (thevalue used in their later experiments) indicated in the figure and legend for figure 6B intheir original paper.2 In figure 6B of the BDW paper, PNH+

4
had values of 0, 10−6, 10−5, and 10−4 cm−1.

3 BDW did not report the value ofVm, but in their code used −55 mV, which matched themeasured mean value.4 In their code BDWused the value of 7.32 and not 7.30, which they usedwhen constructingthe Davenport diagram in their figure 5B.

5 Discussion
The publication of this retrospective paper provides an opportunity to clarify some concepts in theoriginal paper that have benefitted from subsequent experimental and theoretical advances. Wealso provide some additional parameters missing from BDW and correct some minor errors. Mostimportantly, the curated model is now freely available on the Physiome website11 in standardisedform (CellML) that can be run in the open source software OpenCOR. A follow-up paper will bewritten that recasts the equations in bond graph form to facilitate their incorporation into morecomplex models where pH regulation is coupled with other cellular processes.
5.1 Historical Context
The 1976 Boron & De Weer paper introduced the first models to simulate the time course ofpHi. By developing a predictive mathematical model based on first principles, BDW provideda quantitative basis for interpreting their new data on the time-dependent response of pHi tostep changes in extracellular CO2/HCO−3 (and HA/A− pairs in general) and NH3/NH+

4 (and B/BH+

pairs in general). The models also provided a clear, quantitative basis for interpreting BDW’s newdata on how cells regulate their pHi, which BDW modelled as a pHi-dependent H+-extrusionmechanism. Below, we will introduce a broader concept termed “acid extrusion” (Boron, 1977).The first of the two BDWmodels elucidates how the transmembrane fluxes of a neutral weak acidand its anionic conjugate weak base affects pHi, with the acid-extrusion becoming increasinglyimportant as pHi falls. The second model simulates how the transmembrane fluxes of a neutralbase and its cationic conjugate weak acid affects pHi.
11https://models.physiomeproject.org/workspace/5f8
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Figure 6. Solution of the BDWmodel during and following a 1500 s period of externally
applied NH4Cl. In these simulations [NH+

4 ]o = 9 mM. The intracellular fluid becomes alkaline
as NH3 enters (note the JNH3

time course) and hydrates to form NH+
4 and OH−. Additional

passive NH+
4 entry (note JNH+

4
time course) down its electrochemical gradient opposes the effect

of the NH3 entry and slightly reduces the pHi increase. Upon removal of NH4Cl, [NH3]i and
[NH+

4 ]i decay towards their original values, but pHi drops well below its original value of 7.40.

Of course, BDW were not the first to undertake a quantitative assessment of how acids or bases
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affect, or are affected by, the pH of a solution. Below, we divide the earlier work into two majorcategories, (a) analyses of how neutral weak acids (and their anion conjugate weak bases) orneutral weak bases (and their cationic conjugate weak acids) affect pH in simple systems, and (b)analyses of how the distribution of HA/A− (or B/BH+) across a barrier, such as a cell membrane,are affected by pHi andVm.
5.2 Development of the Concept of Buffering in Simple and Complex Systems
Buffering power. In 1914, Koppel (1914) introduced the first modern definition of the chemicalbuffering (i.e., “magnitude of moderation”, or P ) of H+ by a weak-acid/weak-base conjugate pair,and — based on first principles — derived an expression for buffering power. Because theseauthors defined P in terms of the amount of strong acid that one must add to a solution toproduce a pH change, P is a negative number. Roos and Boron (1980) translated the Koppel-Spiropaper from its original German, and provided a historical context.
Initially unaware of the work of Koppel and Spiro, Van Slyke (1922) independently definedbuffering power — to which he assigned the Greek letter β . Because he defined β in terms of theamount of strong base that one must add to a solution to produce a pH change (see Equation 8), βis a positive number. Although modest differences exist between the efforts of Koppel and Spiroon the one hand and Van Slyke on the other, they are quite similar. Nevertheless, it is Van Slyke’sdefinition of β that has become the modern convention throughout chemistry and physiologicalchemistry.
Koppel & Spiro and Van Slyke quantitatively described how — in a one-compartment solution— weak acids, weak bases, ampholytes, and weak-acid/base mixtures can buffer added strongacid or strong base. In their analysis, the system both begins and ends in an equilibrium state. Ofcourse, in their pioneering work, these authors had no reason to contemplate time courses orbarriers separating more than one compartment.
In their work, BDW defined β as a negative number, as Koppel and Spiro defined their P .
The “Davenport” diagram. This nomogram (Boron and Boulpaep, 2016) is a powerful tool forgraphically computing the effects of respiratory acid-base disorders (caused by changes in [CO2]in a system open to CO2) and metabolic acid-base disorders (caused by the addition or removal ofHCO−3 or a strong acid or base). The underlying assumption for the Davenport diagram is that thesystem is in equilibrium. The first component of a Davenport diagram (see Figure 7) is a plot of
[HCO−3 ] vs pHi for one or more values of [CO2] — these are the CO2 isopleths that describe theequilibrium among CO2, HCO−3 , and H+. At any pH on any isopleth, the slope is the open-systemCO2/HCO−3 buffering power (βCO2

). The second component is a linear plot, on the same axes, ofthe concentration of all protonated forms of all non-HCO−3 buffers vs pH. At any pH, the slope isthe buffering power of all non-HCO−3 buffers (βnon−HCO−3 ), and the line is termed the non-HCO−3buffer line. Its linearity implies that βnon−HCO−3 is insensitive to changes in pH. The intersectionof an isopleth with the non-HCO−3 buffer line describes the current state of the system, whenboth CO2/HCO−3 buffer and non-HCO−3 buffers are simultaneously in equilibrium. Davenportdeveloped a series of rules for using this paradigm to interpret acid-base disorders, and theserules are well founded in physical chemistry.
The Davenport diagram traces its origins to the analyses of blood by several eminent investigatorsabout a century ago. It was Henderson (1921) — as far as we are able to ascertain — who in figure4 of his paper was the first to plot [HCO−3 ] vs pH for two H2CO3 (rather than CO2) isopleths, andfor two different values of βnon−HCO−3 (i.e., those produced by 10% and 100% HbO2).
The power of the Davenport approach is that, knowing the initial conditions and the pH depen-dence of βnon−HCO−3 , one can compute with fair accuracy (using the nomogram) or great accuracy(using a computer to solve the equations numerically) the result of virtually any acid-base disorderin the pathophysiological range for a system containing CO2/HCO−3 and a mixture of non-HCO−3buffers. In their figure 5A (reproduced here as Figure 7), BDW used a Davenport approach todescribe the initial steady state of a squid giant axon (point A at pHi ≈ 7.32, [CO2]i = 0.1%), theinitial effect of an exposure to increased [CO2]i (point B, an example of intracellular respiratory
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Figure 7. A Davenport diagram (from figure 5A of BDW). This nomogram consists of two
kinds of plots. The first kind of plot is represented by the four CO2 isopleths that slope upwards
from left to right. Each isolpleth represents all possible combinations of [HCO−3 ]i and pHi for a
given [CO2]i (described here as the % of the air phase that is CO2). The second kind of plot is
represented by the two lines that slope downwards from left to right. The slope of these parallel

lines describes the buffering power of non-CO2/HCO−3 buffers. BDW assumed that the
experiment starts at point A, at pHi = 7.32 and 0.1% CO2. The addition of 5% CO2 causes thepHi at equilibrium to fall to the point represented by point B. The extrusion of acid during theCO2/HCO−3 exposure causes the system to move along the 5% CO2 isopleth from point B to
point C. Finally, upon removal of CO2/HCO−3 , the system returns to the original CO2/HCO−3
isopleth, but now at point D. The difference between points D and A represents the pHi

overshoot. In the BDW paper, β — the slope of the lines in this figure — appeared to be 25mM/pH unit. In fact, the value of β determined in the NH3/NH+
4 experiments (also shown as a

Davenport-like diagram in figure 5B of BDW) was 9 mM/pH unit. The reason for this
discrepancy was probably that BDW delivered the CO2/HCO−3 solution to the axon using a
peristaltic pump and Silastic tubing, which they later realised has a high CO2 permeability.

Thus, the [CO2] reaching the axon was < 5%, accounting for the artificially inflated value for β .
In their follow-up paper (Boron and De Weer, 1976), BDW delivered the CO2/HCO−3 solutions
from glass syringes and through Saran tubing, which has an extremely low CO2 permeability.

acidosis), the effect of the plateau-phase pHi recovery (point C, an example of intracellular com-pensatory metabolic alkalosis), and finally the effect of removing extracellular CO2 (point D, anexample of metabolic alkalosis) to account for the pHi overshoot. If one does not know βnon−HCO−3 ,the Davenport diagram allows one to compute it from the initial and final pH . The numericalintegration of the BDW equations — when PHCO−3 and the acid extrusion rate are both zero —should in principle yield, at infinite time, results consistent with the Davenport diagram.
In their paper (their figure 5B), BDW introduced a novel Davenport-like diagram for the NH3/NH+

4buffer system, with [NH+
4 ] on the ordinate (replacing [HCO−3 ]), NH3 isopleths (replacing CO2isopleths), and a line describing non-NH3/NH+

4 buffering power (replacing the line describingnon-CO2/HCO−3 buffering power). Like the classical Davenport diagram, this one (or others like it,constructed for other buffer pairs) can be a useful tool for interpreting — in the steady state —problems in acid-base chemistry.
In the Davenport analysis, the initial and final conditions represent equilibria. Davenport-likediagrams provides no information about the time course of pH between the initial and finalstates. Nor can Davenport-like diagrams deal with time course, barriers (e.g., cell membranes),permeabilities to substances other than the neutral molecule (e.g., CO2, NH3), or active transport.Of course, in their pioneering work, Henderson, Davenport, and other authors contributing tothis nomogram had no reason to contemplate these future complexities.
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5.3 Pre-BDW Analyses of Transmembrane Distributions of Weak Acids and Bases
As summarised by Roos and Boron (1981), about a century ago, several authors — who assumedthat CO2 equilibrates across the plasma membrane but that HCO−3 is impermeant — used the sum
[CO2]i+ [HCO−3 ]i to compute the steady-state pHi of several cell types. Then, beginning in 1940, aseries of authors introduced three successively more sophisticated mathematical analyses for thesteady-state transmembrane distribution of a neutral weak acid and its anionic conjugate weakbase (i.e., TA), and three more for the distribution of a neutral weak base and its cationic, conjugateweak acid (i.e., TB). We will now present these analyses in order of increasing complexity, andaccording to their sequence in time (see Figure 8). They all have in common the assumption thatthe system is either in equilibrium or at least in a steady state supported by the input of energy.

Figure 8. Timeline of acid-base/pHmodels prior to BDW. Note that the time-dependent BDW
model of weak acid/conjugate weak base (HA/A−) collapses to Roos (1965, 1975) steady-state
model for HA/A−. The Roos (1965, 1975) model, in turn, reduces to the Milne et al. (1958)

model for HA/A− when the membrane potential (Vm) approaches zero. Finally, the Milne et al.
(1958) model reduces to the Jacobs (1940) model — where only one uncharged species HA is
permeant — as the permeability of A− (PA−) approaches zero. Similarly, the time-dependent
BDWmodel of weak base/conjugate weak acid (B/BH+) collapses to Boron and Roos (1976)
steady-state model for B/BH+. The Boron and Roos (1976) model in turn reduces to the Orloff
and Berliner (1956) model for B/BH+ whenVm approaches zero. Finally, the Orloff and Berliner

(1956) model reduces to the Jacobs-like model — where only one uncharged species B is
permeant — as (PB) approaches zero.

Jacobs (HA, neutral weak acid). Jacobs (1940) presented a general mathematical model that de-scribes the equilibrium transmembrane distribution of total weak acid (TA), assuming that onlythe neutral species (HA), but not the conjugate weak base (A−) can cross the membrane:
[TA]i
[TA]o =

10pHi−pK + 1
10pHo−pK + 1 . (44)

In an accompanying document, we show the derivation of the above equation12, the linear formof which is:
[TA]i
[TA]o =

(
[H+]i + K
[H+]o + K

) (
[H+]o
[H+]i

)
. (45)

12See equation 24 in Derivation of the Jacobs Neutral Weak Acid Equation (Log) in Supplementary Files

18/32



We also present the derivation of this linear version in an accompanying document13. A majorassumption in the derivations of both Equation 44 and Equation 45 is that HA does not merelymove but fully equilibrates across the cell membrane. That is, the system is in equilibrium.
The notion that only the neutral member of the buffer species (i.e., HA) can traverse the membraneis known as nonionic diffusion. Equation 44 and Equation 45 tell us that, as pHi rises (i.e., [H+]ifalls), [TA]i rises steeply because [A−]i rises exponentiallywith pHi—a concept known as “trapping”(of the A−).
Jacobs-like equation (B, neutral weak base). Although Jacobs did not present the analogous equa-tion for total weak base (TB), others have derived it, including Roos and Boron (1981):

[TB]i
[TB]o =

10pK−pHi + 1
10pK−pHo + 1

. (46)
In an accompanying document, we show the derivation of Equation 46,14 the linear form of whichis:

[TB]i
[TB]o =

[H+]i + K
[H+]o + K . (47)

We also present a derivation of Equation 47.15 A major assumption in the derivations of Equa-tion 46 and Equation 47 — analogous to the situation for Equation 44 and Equation 45 — is thatB fully equilibrates across the cell membrane. That is, the system is in equilibrium.
The notion that only the neutral member of the buffer species (i.e., B) can traverse the membraneis another example of nonionic diffusion. Equation 46 and Equation 47 tell us that, as pHi falls(i.e., [H+]i rises), [TB]i rises steeply because [BH+]i rises exponentially with the decrease in pHi— another example of “trapping” (of the BH+). Such trapping is especially important in renalphysiology, where acidic fluid in renal tubules can trap the cationic form of a buffer pair (e.g.,NH+

4 ).
Equation 44 and Equation 46 provide the theoretical foundation for using [TA]i/[TA]o ratios forpermeant weak acids (e.g., CO2, above, and the later 5,5’-dimethyl-2,4-oxazolidinedione [DMO]technique) or [TB]i/[TB]o ratios for permeant weak bases (e.g., for methylamine; see Boron andRoos (1976)) for computing steady-state pHi. For example, equation tells us that, as pHi rises,
[TA]i/[TA]o will rise nearly exponentially; this occurs because [A−]i rises in a precisely exponentialfashion.
Orloff & Berliner (B/BH+, Vm = 0). Orloff and Berliner (1956) extended the Jacobs-like modelto a neutral weak base and its cationic conjugate weak acid by permitting not just B but alsoBH+ to permeate a barrier separating compartments 1 and 2. They avoided the complication ofBH+ electrodiffusion by assuming a transmembrane voltage of zero (i.e.,Vm = 0). Because theyrecognised that the flux of BH+ across the barrier would cause pH to drift in opposite directionsin the two compartments, they assumed that independent, energy-requiring processes wouldstabilise pH in the two compartments and establish a steady state described by

PB
PBH+

=
[BH+]i − [BH+]o
[B]o − [B]i . (48)

In an accompanying document16, we show the derivation of Equation 48. If we put Equation 48into the same form as Equation 47, which expresses the buffer concentrations in terms of [TB]iand [TB]o then — for cells — we have
[TB]i
[TB]o =

(
[H+]i + K
[H+]o + K

) ©«
PB
PBH+

K + [H+]o
PB
PBH+

K + [H+]i

ª®®®¬ . (49)
13See equation 25 in Derivation of the Jacobs Neutral Weak Acid Equation (Linear) in Supplementary Files14See equation 33 in Derivation of a Jacobs-like Equation (Log) for a Neutral Weak Base in Supplementary Files15See equation 21 in Derivation of a Jacobs-like Equation (Linear) for a Neutral Weak Base in Supplementary Files16See equation 26 in Derivation of the Orloff-Berliner Equation in Supplementary Files
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As PBH+ approaches zero, Equation 49 reduces to Equation 47 — the Jacobs-like equation for aweak base. The accompanying document17 also shows the derivation of Equation 49, as well asthe mathematics that shows the limit of this expression as PBH+ approaches zero.
Note that the flux of BH+ — which leads to a flux of B in the opposite direction — tends to pushthe system off equilibrium. As noted above, the Orloff-Berliner equation requires that the systembe in a steady-state, which can be achieved, as they recognised, only by an input of energy tomaintain all relevant concentrations constant over time.
Milne et al (HA/A−,Vm = 0). Milne and colleagues (1958) developed a steady-state expressionsimilar to that of Orloff & Berliner, but for the transmembrane distribution of a neutral weak acidand its anionic conjugate weak:

PHA
PA− =

[A−]i − [A−]o
[HA]o − [HA]i . (50)

An accompanying document18 shows the derivation of Equation 50, which we can also put in theform of Equation 49, which expresses buffer concentrations in terms of [TA]i and [TA]o:

[TA]i
[TA]o =

(
[H+]i + K
[H+]o + K

) ©«
PHA
PA− [H+]o + K
PHA
PA− [H+]i + K

ª®®®¬ . (51)

As PA− approaches zero, Equation 51 reduces to Equation 45 — the Jacobs equation for a weakacid. The accompanying document19 also shows the derivation of Equation 51, as well as themathematics that shows the limit of this expression as PA− approaches zero.
Roos (HA/A−, non-zeroVm). In 1965 and 1975, Roos extended the Irvine model by allowingVmto assume non-zero values (Roos, 1965, 1975), and derived the following equation,

[TA]i
[TA]o =

(
[H+]i + K
[H+]o + K

) ©«
PHA
PA− [H+]o + FVm

RT (1 − ε)K
PHA
PA− [H+]i + FVm

RT (1 − ε)K
ª®®®¬ , (52)

where ε has the same meaning as in the derivation of the BDW equations: e−VmF /RT . An accom-panying document20 shows the derivation of Equation 52. This document also shows that, at thelimits of certain parameters, Equation 52 simplifies to the expected equation:
1. As Vm → 0, the Roos equation simplifies to the equation of Milne et al (which assumes
Vm = 0).2. As PA− → 0, the Roos equation simplifies to the Jacobs equation (which assumes PA− = 0).3. As PHA → 0, the Roos equation simplifies to the Nernst equation (which assumes perme-ability to only A−).

The Roos equation was important historically because it allowed one to assess possible errorsin pHi values computed from the transmembrane distribution of a neutral weak acid (e.g., CO2,DMO) and its monovalent anion conjugate weak base. These errors could in principle arise frommembrane permeability to A− (as already considered by Milne et al), as influenced byVm.
Boron & Roos (B/BH+, non-zeroVm). Finally, Boron and Roos (1976) derived an equation similarto the Roos equation, but for the distribution of a neutral weak base and its monovalent cationic

17See equation 55 in Derivation of the Orloff-Berliner Equation in Supplementary Files18See equation 26 in Derivation of the Equation of Milne et al for a Neutral Weak Acid in Supplementary Files19See equation 62 in Derivation of the Equation of Milne et al for a Neutral Weak Acid in Supplementary Files20See equation 45 in Derivation of the Roos Equation in Supplementary Files
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conjugate weak acid:
[TB]i
[TB]o =

(
[H+]i + K
[H+]o + K

) ©«
PB
PBH+

K + FVm
RT (ε ′ − 1) [H+]o

PB
PBH+

K + FVm
RT (ε ′ − 1) ε

′[H+]i

ª®®®¬ , (53)

where ε ′ has the same meaning as in the derivation of the BDW equations: eVmF /RT . An accom-panying document21 shows the derivation of Equation 53. This document also shows that, at thelimits of certain parameters, Equation 53 simplifies to the expected equation:
1. AsVm → 0, the Boron-Roos equation simplifies to the equation of Orloff & Berliner (whichassumesVm = 0).2. As PBH+ → 0, the Boron-Roos equation simplifies to the Jacobs-like equation for a neutralweak base (which assumes PBH+ = 0).3. As PB = 0, the Boron-Roos equation simplifies to the Nernst equation (which assumespermeability to only BH+).

The Boron-Roos equation was important historically because it allowed one to assess possibleerrors in pHi values computed from the transmembrane distribution of a neutral weak base (e.g.,methylamine) and its monovalent anion conjugate weak base. These errors could in principlearise from membrane permeability to BH+, as influenced byVm. In their paper, Boron and Roosused the transmembrane distribution of methylamine/methylammonium to monitor a downwarddrift in pHi caused by the passive influx of methylammonium. This was the first use of a chemical-distribution technique to follow pHi changes over time.
We have already noted for the Orloff-Berliner equation that the derivation requires that thesystem be in a steady-state, which can be achieved only by an input of energy to maintain allrelevant concentrations constant over time. The same is true for the equations of Milne et al,Roos, and Boron & Roos.
5.4 Comparison of the Pre-BDW Analyses with the BDW Equations
The BDW equations build on the earlier work on buffering and transmembrane distributions ofweak acids and bases, presented in the previous two sections. Of course, the work of Koppel andSpiro, and Van Slyke, as well as their predecessors who developed the physico-chemical principlesof acid-base chemistry, is at the heart of the BDW model.
An important aspect of the Davenport diagram is its predictive power. For example, given
βnon−HCO−3 as well as the initial pH and [CO2], the Davenport approach can predict the effect of anincrease in [CO2] on the final equilibrium conditions. However, the Davenport approach makesno statement about mechanism or time course. The BDW approach has all the predictive powerof Davenport, but also addresses mechanism and time course.
The six pre-BDW approaches for assessing transmembrane distributions of HA/A− and B/BH+

all start with the weak acid/base present and the system in an equilibrium or at least in a steadystate. Somehow, the system — the cell and its surrounding fluid — went from a condition with noweak acid/base present to a condition with the weak acid/base present at equilibrium/steadystate. The older models make no attempt to describe how and how fast the system achievedthe new state, and — unlike the Davenport approach — have no predictive value for relatinginitial and final conditions. It is worth noting that the investigators who developed these sixapproaches were interested mainly in using tracer levels of weak acids/bases to compute pHi. Theintention was that tracer levels would have minimal effects on the state of the system — hence,the minimal interest in the prediction. Note that, at infinite time (and with no acid extrusion),the BDW equations reduce to those six transmembrane-distribution analyses presented in theprevious section.
To some extent, the BDW models represent a merger of the Davenport and the six pre-BDWapproaches for assessing transmembrane distributions of HA/A− and B/BH+. Like the Davenport

21See equation 44 in Derivation of the Boron-Roos Equation in Supplementary Files
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approach, the BDW approach is predictive. However, unlike Davenport’s approach, the BDWmodels provide insight into mechanism and time course, and are applicable even when the systemis far from equilibrium/steady state. Like the six transmembrane-distribution models, the BDWmodels provide insight into how pHi andVm affect [HA]i, [A−]i, [B]i, and [BH+]i. Unlike the sixtransmembrane-distribution models, the BDW models are predictive and provide insight intomechanism and time course.
It is worth noting that BDW derived their equations under the influence of Albert Roos, who hadderived the transmembrane-distribution model for HA/A− (Roos, 1975) and who inspired Boron’sderivation of the B/BH+ model (Boron and Roos, 1976).
5.5 Post-BDW Development of Concepts
Fundamental law of pHi regulation. Recall that one of the intermediate steps of the derivation ofthe BDW equations for the HA/A− system was Equation 21, which we reproduce here:

dpH
dt =

(
−1
β

) (dQ
dt

)
. (54)

Another intermediate step was the description of dQ/dt in Equation 17, which we reproducehere:
dQ
dt = ρ

(
(1 − α)JHA − αJA− − JH+

)
. (55)

Combining the above two equations yields a primitive form of the fundamental law of pHiregulation:
dpHidt = − 1

β
ρ
(
(1 − α)JHA − αJA− − JH+

)
︸                                ︷︷                                ︸

dQ/dt
. (56)

In the later literature, Boron and colleagues in effect dissected the dQ/dt term — the net rateat which H+ appear in the cytosol (mol ·m−3 · s−1) — into two concepts that are more generalthan those considered by BDW in Equation 56: the intracellular acid-loading rate (JL ) and theintracellular acid-extrusion rate (JE ).
In the narrow definition of Equation 56 the only JL term is (1−α)JHA. In the post-BDW literature,Boron and colleagues defined JL to comprise every process that adds the equivalent of H+ toor removes the equivalent of OH− from the cytosol, including H+ channels (mediating passiveH+ influx), a variety of transporters (e.g., Cl-HCO3 exchangers mediating HCO−3 efflux), and themetabolic production of acid. Boron et al. (1979) measured and introduced the term “rate of acidintroduction”. Roos and Boron (1981) later replaced this term when they coined “acid-loadingrate”.
In the narrow definition of Equation 56, the JE terms are αJA− and JH+ . Note that BDWdefined JH+as the H+-extrusion rate above baseline. In the post-BDW literature, Boron and colleagues defined
JE to comprise every process that removes the equivalent of H+ from or adds the equivalent ofOH− to the cytosol, including a variety of transporters (e.g., H+ pumps, Na-H exchangers) thatmediate H+ efflux and others (e.g., Na+-driven HCO−3 transporters, H+/lactate cotransporters)that mediate base efflux. It appears that Boron in 1977 provided the first definition of acidextrusion.
Recasting Equation 56 in terms of JL and JE ,

dpHidt = − 1
β
ρ
(
(1 − α)JHA︸        ︷︷        ︸

JL term
−αJA− − JH+︸          ︷︷          ︸

JE terms

)
︸                                 ︷︷                                 ︸

dQ/dt

. (57)
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The modern version of the fundamental law of pHi regulation is:
dpHidt =

ρ

β
(JE − JL). (58)

Here, with the explicit inclusion of ρ, JE and JL have the units (moles · cm−2 · s−1).
Equation 58 tells us that pHi is stable when JE = JL , rises when JE > JL , and falls with JE < JL .BDW did not derive the above equation in their 1976 paper. The first statement of the conceptof Equation 58 was in sentence form in the review by Roos and Boron (1981), who also provideda graphical example in their figure 12. By 1989, Boron presented a version of Equation 58 thatlacks the term ρ. Thus, he implicitly defined JE and JL in terms of (moles · cm−3 · s−1). This 1989paper also included examples of how Equation 58 could help one interpret the time course of pHiin many experimental settings. For example, a bolus introduction of acid into a cell — an “acute”intracellular acid load, coined by Boron by the time of this 1989 review — rapidly lowers pHi, butalso increases JE and decreases JL . Because JE now exceeds JL , pHi recovers to its initial value.By 1992, Boron coined the term “fundamental law of pHi regulation” to describe Equation 58.
Note that an acute or bolus intracellular acid load is to be distinguished from a chronic intracellularload (the rate of which is JL ). The amount of an acute acid load can instantly be quantitated inacid equivalents. The amount of a chronic acid load can only be quantitated in acid equivalentsby integrating JL over time.
Later, Boron (2004) provided a more detailed description of pHi regulation, as well as a tongue-in-cheek analogy — which he had been using for years in lectures — between pHi regulation and thetemperature regulation of a house, complete with multiple furnaces (acid-extruders), multiple airconditioners (acid loaders), heat capacity (buffering power), a thermostat (pHi sensitivity of thetransporters), and weather radar (extracellular sensors for CO2, HCO−3 , and pH).
Flux vs pseudoflux. One can define the acid-loading and acid-extrusion rates as strict fluxes,with units of moles/(membrane area × time). Such of use of JE or JL — for example JNBC (theacid-extruding flux mediated by a Na/HCO3 cotransporter, NBC) or JCl−HCO3

(the acid-loading fluxmediated by a Cl-HCO3 exchanger) — is most appropriate in cases in which the cell has a simplegeometry (e.g., a squid axon or Xenopus oocyte). However, for cells with complex geometries —where surface-to-volume ratios are difficult to define — physiologists often present experimentaldata in the units “moles/(volume of cell water)”. To avoid confusion between the two systems ofmeasurement, Bevensee and Boron (1995) introduce the term “pseudoflux” and the symbol φ(rather than J ). Thus, in their paper, the authors referred to φE and φL (rather than JE and JL ), sothat the fundamental law of pHi regulation becomes
dpHidt =

φE − φL
β

. (59)
Effect of isodirectional fluxes ofHA/A− or B/BH+ fluxes on pH near a membrane. The α term in Equa-tion 14 and Equation 37, and the (1 − α) term in Equation 16 and Equation 38 inspired an insightthat yields equations analogous to the familiar Henderson-Hasselbalch equation. The startingpoint was the following question: if both B and BH+ cross the membrane in the same direction,how will their isodirectional fluxes affect pH on the cis side (the side from which they depart) andthe trans side (the side to which they go)?
In the discussion of their paper, Musa-Aziz et al. (2009b) showed that if the flux ratio JNH3

/JNH+
4is the same as the concentration ratio [NH3]i/[NH+

4 ]i, the flux will have no effect on pHi becauseNH3 and NH+
4 are appearing (or disappearing) at the inner surface of the membrane in a proportionequal to their respective, pre-existing concentrations. Similarly, if the flux ratio JNH3

/JNH+
4
is thesame as the concentration ratio [NH3]o/[NH+

4 ]o, the flux will have no effect on pHo. Statedsomewhat differently, as in equation 4 of Musa-Aziz et al. (2009b),
pHi,Null = pKa + log JNH3

JNH+
4

, or more generally, pHi,Null = pKa + log JB
JBH+

(60)
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and
pHo,Null = pKa + log JNH3

JNH+
4

, or more generally, pHo,Null = pKa + log JB
JBH+

(61)
Here, pHi,Null is the pHi at which the isodirectional fluxes JB and JBH+ will have no effect on pHi.Similarly, pHo,Null is the pHo at which the isodirectional fluxes JB and JBH+ will have no effect onpHo. If pHi = pHo, then their null pH values are the same (i.e., at this pH, the isodirectional fluxesof B and BH+ will have no effect on either pH). One can write equations similar to Equation 60and Equation 61, but for CO2 and HCO−3 (or HA and A−), which we do here for the first time:

pHi,Null = pKa + log JHCO−3
JCO2

, or more generally, pHi,Null = pKa + log JA−
JHA (62)

and
pHo,Null = pKa + log JHCO−3

JCO2

, or more generally, pHo,Null = pKa + log JA−
JHA (63)

The previous four equations can be valuable for interpreting, for example, the effects of isodi-rectional fluxes of CO2 and HCO−3 . The equations cannot predict the speed or extent of the pHchange, only the direction. For instance, if we expose a cell to a CO2/HCO−3 solution and pHi falls,does mean that JCO2
> JHCO−3 ? The intuitive answer would be, “yes”. The actual answer is, “notnecessarily”. Imagine that — in a CO2/HCO−3 -free environment — we have a CO2/HCO−3 -free cellat a pHi of 7.1. Although no CO2/HCO−3 is present, we assume that the pKa of the CO2/HCO−3equilibrium would be 6.1 if CO2/HCO−3 were present. We now suddenly add CO2/HCO−3 tothe extracellular fluid — the precise ratio is of no consequence here because we will focus onthe intracellular fluid. CO2 and HCO−3 now begin to enter the cell by any route. If the ratio

JHCO−3 /JCO2
= 10pHi−pKa = 107.1−6.1 = 10, then pHi will not change from its original value of 7.1because HCO−3 and CO2 are entering the cell precisely in the correct ratio for a pH of 7.1. If

JHCO−3 /JCO2
< 10 (in this case), pHi will fall because the alkalinising pHi effects of the HCO−3 influxare less than the acidifying pHi effects of the CO2 influx. This approach cannot tell us how fast orhow far pHi will fall, only that, initially at least, it must fall. The same analysis can be applied —simultaneously — to the extracellular fluid.

5.6 Post-BDWModels of Acid-Base Fluxes/Chemistry
Following the development of the BDW model, the field of pH regulation has seen severalmodelling efforts. Here, we summarise several, with emphasis on those models that, in ouropinion and to the best of our knowledge, have contributed to advance the field, either byextending the BDW model or by introducing new modelling paradigms.
Keifer and Roos. In 1981, Keifer and Roos refined the BDW model by modifying the BDWassumption that addition of an infinitesimal amount of weak acid HA (or A−, B, or BH+) duringan infinitesimal increment in time does not alter the pre-existing equilibrium ratio [HA]i/[A−]ior [B]i/[BH+]i (Keifer and Roos, 1981). These authors were interested in the transmembranefluxes of the neutral weak acid DMO and its conjugate weak base. Keifer & Roos assumed that— at the end of the infinitesimal time increment during which HA and A− entered/left the cell —the cytosolic HA, A− and H+ re-equilibrated. They used this variation on the BDW approach toestimate PHA and PA− , finding that the plasma membrane permeability to HA is ≈ 103 higher thanto A−. In the appendix of their paper, Keifer & Roos derived their refined version of the BDWequations for HA/A−:

d[TA]idt = ρ (JHA + JA− ) ,

d[H+]idt =
2.303[H+]i

β
ρ

((
KHA

[H+]i + KHA + Knew
)
JHA −

(
[H+]i

[H+]i + KHA + Knew
)
JA−

)
,
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where
Knew = 2.303KHA

(
[TA]i
β

) (
[H+]i

[H+]i + KHA
)
,

JHA = PHA
(
[HA]o − [H+]i

[H+]i + KHA [TA]i
)
,

JA− = PA−
(
VmF
RT

) ©«
[A−]o − KHA

[H+]i + KHA [TA]iε
1 − ε

ª®®®¬ .
The first of these two equations is identical to that presented by BDW, whereas the secondincludes the new terms (Knew).
In the appendix of their paper, Keifer and Roos noted that it is possible to derive a comparablepair of equations for B/BH+. In their 1981 review, Roos & Boron reported the two equations ofthe refined BDW model for B/BH+ (see their Equation 25 and Equation 26):

d[TB]idt = ρ (JB + JBH+ ) ,

d[H+]idt =
2.303[H+]i

β
ρ

((
KBH+

[H+]i + KBH+ + Knew
)
JBH+ −

(
[H+]i

[H+]i + KBH+ + Knew
)
JB

)
,

where
Knew = 2.303KHA

(
[TA]i
β

) (
[H+]i

[H+]i + KHA
)
,

JBH+ = PBH+

(
VmF
RT

) ©«
[BH+]o − [H+]i

[H+]i + KBH+
[TB]iε ′

ε ′ − 1

ª®®®¬ ,
JB = PB

(
[B]o − KBH+

[H+]i + KBH+
[TB]i

)
.

Note that as [TA]i approaches zero, or as β approaches infinity, the new terms (Knew) approachzero, and thus the refined BDW model collapses to the original BDW model. Keifer & Roos didnot consider net H+ efflux (i.e., active acid extrusion).
In order to test whether the Keifer-Roos refinement really improves the predictions of the originalBDW model, we implemented the BDW model with and without the Keifer-Roos refinement andemployed the two models to simulate how pHi changes when (a) only CO2 enters the cell (i.e.,HCO−3 permeability is zero) and (b) no proton pumping is present (i.e., JH is zero). With assumptions‘a’ and ‘b’, the BDWmodel will take the system to equilibrium, where we can compare the predictedfinal pHi with that produced by the Davenport diagram — our gold standard for the value of pHiat equilibrium. Using the parameter values of Table 1 and Table 2, we find that both the refinedBDW model and the Davenport diagram predict final pHi values of 6.972, whereas the originalBDW model predicts a slightly lower pHi of 6.964 — lower because the original BDW does notincorporate as much self-buffering (as Keifer & Roos termed it).
Extending BDW to an epithelial cell. As part of their study of the CO2 permeability of gastric-glandcells, Waisbren et al. (1994) extended the BDWmodel in three ways. First, rather than integratingtwo equations (i.e., d[TA]i/dt and d[H+]i/dt ), they integrated three equations (i.e., d[HA]i/dt ,d[A−]i/dt , and d[H+]i/dt ). Second, after each step of the integration, they re-equilibrated HA, A−,and H+ in the cytosol — a maneuver equivalent to the Keifer-Roos extension of the BDW model.Third, they modelled two separate extracellular fluids (each an infinite reservoir), the equivalentof a luminal solution facing one half of the cell that represented the apical membrane, and a
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basolateral solution facing the other half of the cell that represented the basolateral membrane.The geometry of the cell was still cylindrical, like the squid axon. In their review, Boron et al.(1994) provide additional information about this modelling, which showed that — to accountfor the physiological data in the paper by Waisbren et al. (1994) — the (membrane area) × (CO2permeability) product must be > 1000-fold greater for the basolateral than the apical side of theepithelial cell. Thus, this modelling was a critical part of the main conclusion of the paper byWaisbren et al. (1994), which identified the apical membranes of the gastric chief and parietalcells as the first known membranes with negligible CO2 permeability.
Model of pHi regulation by the Vaughan-Jones group. Following BDW’s approach for modelling thenet rate of acid addition into the cytosol, Leem et al. (1999) developed the first comprehensivemathematical model of pHi regulation in cardiac myocytes. They simulated the experimentallyobserved pHi recovery from an acid load (obtained with the ammonium prepulse technique,introduced by BDW) or a base load (obtained with the acetate-prepulse technique). In their model,Leem and coworkers incorporated acid-base fluxes mediated by four sarcolemma transporters,two acid extruders (i.e., Na-H exchangers and Na/HCO3 cotransporters) and two acid loaders (i.e.,Cl-HCO3 exchangers and hypothetical Cl-OH exchangers) as well as a time-dependent intracellularbuffering by the CO2/HCO−3 system. Their simulations nicely reproduced the pHi changes thatthey observed in rather complex physiological experiments.
Model ofH+ diffusion by the Vaughan-Jones group. Richard Vaughan-Jones and his colleagues haveextensively investigated the spatial variability of intracellular H+ diffusion in a series of experi-mental studies (e.g., confocal measurements of pHi) complemented by mathematical modelling(Vaughan-Jones et al., 2002; Zaniboni et al., 2003; Swietach et al., 2003). These authors devel-oped two-dimensional diffusion models of intracellular H+ diffusion from a constant source toestimate the apparent diffusion constant of H+ in cardiac ventricular myocytes. They found thatthe apparent H+ mobility is low in cardiac cells because of the presence of mobile and immobilebuffers. Later, Swietach and coworkers developed two-dimensional reaction-diffusion models,which they solved numerically in the longitudinal direction only (Swietach et al., 2003, 2005). Thisapproach allowed them to investigate further the spatial variability of intracellular H+ diffusion viaa proposed H+ shuttling among intracellular mobile buffers. More recently, this group developeda reaction-diffusion model of pH regulation in tumor spheroids to study the role of carbonicanhydrase (CA) IX in facilitating CO2 excretion from tumor cells, thus favoring tumor-cell survivaland proliferation (Swietach et al., 2008, 2009).
Models of the Gros group. Gerolf Gros and his colleagues have employed mathematical modellingof acid-base physiology to estimate the apparent membrane permeability of the red blood cell(RBC) membrane to CO2 (PCO2

) and HCO−3 (PHCO−3 ), as well as extra- and intracellular CA activity,
from mass-spectrometric data and the 18O-exchange technique (Wunder et al., 1997). Theircompartmental model comprises a system of six ordinary differential equations that account forthe 18O-exchange reactions among HCO−3 , CO2 and H2O in both the intracellular and extracel-lular compartments, and for transfer of CO2 and H2O across the intracellular and extracellularcompartments.
In 2005, Endeward & Gros used this modelling framework to estimate PCO2

and PHCO−3 of theapical membrane of the colonic epithelium in guinea pigs. They found that the apical membranehas a quite low PCO2
, possibly because of the absence of membrane proteins (e.g., aquaporin 1,AQP1) that act as conduits (i.e., gas channels) for the movement of CO2.

In 2009, these same authors extended their previous compartmental model of 18O-exchange to aone-dimensional reaction-diffusion model of an RBC surrounded by an extracellular unconvectedlayer that can exchange solutes with a well-stirred bulk solution (Endeward and Gros, 2009). Theyemployed the model to assess the influence of intracellular and extracellular unconvected layersin the estimation of PCO2
RBC membranes. The combination of physiological experiments andmodelling allowed them to estimate the extra- and intracellular unstirred layers, and confirm theirearlier conclusions that the PCO2

of RBC membranes is low in the absence of gas channels.
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Models of the CWRU group. With the goal of assessing the role of CO2 channels in producingdecreases in pHi and transient alkaline transients in extracellular-surface pH (pHS) as CO2 entersa Xenopus oocyte (Endeward et al., 2006; Musa-Aziz et al., 2009a, 2010), the group at CaseWestern Reserve University developed a three-dimensional reaction-diffusion model of CO2influx into a spherical cell (Somersalo et al., 2012). The model accounts for a multitude of bufferreactions, as well as solute diffusion within the unconvected intracellular fluid (ICF) and theextracellular unconvected fluid (EUF) that surrounds the cell. Because the electrophysiologistsestablished experimental conditions in which only CO2 can cross the plasma membrane, themodellers allowed only CO2 to diffuse between the ICF and EUF. However, all solutes can diffusewithin the ICF as well as between the EUF and the bulk extracellular fluid (bECF) that surroundsthe EUF. Somersalo and coworkers employed the model to investigate a variety of theoreticalconditions. For example, they investigated how changes in the width of the EUF or in the valueof PCO2
affect pHi and pHS transients. The model suggests that, in oocytes, the background PCO2(i.e., in the absence of channels) must be low in order for CO2 channels to have the observedeffect on the maximal rate of intracellular acidification, (dpHi/dt )max, or on the maximal height ofthe alkaline pHS transient, (∆pHS)max.

In 2014, Occhipinti and coworkers extended the above theoretical model and employed it toinvestigate the role that CA II and CA IV play in enhancing transmembrane CO2 fluxes (Musa-Aziz et al., 2014a,b; Occhipinti et al., 2014). The model was able to mimic the pHi and pHSexperiments under a variety of experimental conditions. Moreover, it provided a novel observationthat the effects on cytosolic CA II and extracellular CA IV on (dpHi/dt )max and (∆pHS)max aresupra-additive. More recently, the CWRU group further extended the oocyte model to includethe special microenvironment that the pHS electrode creates when pushed against the oocytemembrane to record the pHS transient (Calvetti et al., 2020). This model, solved using finite-element method, predicts that the special microenvironment between the blunt tip of the pHSelectrode and the oocyte membrane greatly amplifies the alkaline (∆pHS)max as CO2 enters thecell.
6 The Future
The advice, “It’s tough to make predictions, especially about the future” is attributed to Yogi Berra,amateur philosopher and legend of American baseball. His advice certainly applies here. Weimagine that the grand goal of the acid-base segment of world-wide biomedical science would beto model whole-body acid-base regulation on a cell-by-cell basis for a wide range of physiologicaland pathophysiological challenge. Of course, we all expect modelling to provide new insightsthat we can test in physiological experiments. However, the models should ultimately providemedical professionals with powerful insights into pathophysiology. These goals represent anenormous challenge in multi-scale modelling — multiscale in both time and space. That lofty goalis probably many decades away, even with appropriate grant support and continued developmentof computer hardware and software.
The process could begin at the single-cell level. Even here, the challenge is daunting because, aspointed out by Occhipinti and Boron (2015), the movements of acid-base equivalents across theplasma membrane create complex interdependencies among buffer reactions, diffusion processesand transporter mechanisms. Intuition alone cannot explain or predict the consequences ofthese numerous simultaneous processes on pH. Advanced mathematical models — includingdetails on processes or more complex geometries — performed in conjunction with physiologicalexperiments can provide a useful tool to make predictions and provide mechanistic explanationson observed pH changes. The pH community has begun taking the first steps with cells of simplegeometry, like oocytes (i.e., spheres). Even so, current models only simulate passive diffusion ofsubstances like CO2 and lactic acid. Current reaction-diffusion models do not yet incorporateelectrodiffusion, let alone electrodiffusion through particular channels. The next step might beto incorporate specific acid-base transport systems (e.g., Na/HCO3 cotransporters, Cl-HCO3 ex-changers) with characteristic kinetic properties. Ultimately, one would like to include all traffic (i.e.,including non-acid-base traffic) across the cell membrane, and the regulation of this traffic. Modelvalidation would require extensive physiological studies on these simple cell systems to verify
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that simulations of ion conductances (and ultimately channels) and transporters are reasonable.Moreover, even these relatively simple first steps would require efficient computational methodsfor solving the governing equations.
From the level of the single cell, the field must move in two opposite directions. In the reductionistdirection, wemustmove fromwhole cells to nanodomains (i.e., themesoscopic level) and ultimatelyto single molecules. At first, we guessed at even the number of different kinds of such proteins.Now we know the identities of specific proteins and their amino-acid sequences, and sometimeseven their structures. Even so, cells are often capable of making many protein variants from onegene, and regulating these in response to myriad influences. Even the protein structures aremerely an early step in understanding transporter mechanism.
In the opposite, integrative direction, the community must extend the models to more complexgeometries, like the cells of a simple epithelium, spindle-shaped cells (e.g., muscle), cylinders(e.g., axons, dendritic processes), and ultimately cells of very complex geometry (e.g., neurons,astrocytes). In real life, even a simple epithelium is far more complex than a cuboid. The apicalmembrane (nearest the tight junctions) of a cell of the proximal tubule (PT) has microvilli. The baso-lateral membrane (nearest the blood) has infoldings. These complexities create nanoenvironmentson both the cytosolic and extracellular sides of the membrane. The tight junctions that separatethe PT cells allow the paracellular diffusion of water and certain solutes. The lateral interspacesbetween adjacent cells also creates nanoenvironments. All of these nanoenvironments are likelyto be extremely important for the physiology of the epithelium. Further complexities include themyriad cellular organelles. These not only affect diffusion of water and solutes through the cytosol(by creating tortuosity), but also can engage in their own collection of transport processes thatcan affect pHi and contribute to buffering. Several groups have developed either steady-state ortime-dependent compartmental models of acid-base transport in PTs and, more generally, solutereabsorption in various segments of the nephron (Thomas and Dagher, 1994; Krahn and Wein-stein, 1996; Thomas et al., 2006; Weinstein et al., 2007; Weinstein and Sontag, 2009; Layton andEdwards, 2014; Edwards and Layton, 2017). Bransen and coworkers have used a finite-elementapproach to solve the partial differential equations that describe their reaction-diffusion model ofNa-H exchange in the microvilli of the PT (Brasen et al., 2014).
Beyond cells, we must create whole tissues (e.g., a cylindrical PT) from many cells, and createwhole organs (e.g., a kidney) from these tissues. Models of a whole kidney, for example, wouldhave to consider the interstitial fluid and capillaries, the complex exchanges of substances amongthem, and the changes in composition that occur as fluids flow along the lumens of the tubuleand capillaries. Comparable modelling must extend to every tissue and organ, and consider thecomplex intercommunications among them via the circulatory and neuro-endocrine systems aswell as metabolism. In the case of acid-base physiology, one must model the specific roles thatcertain organs — the brain, the pulmonary system, and the kidneys — play in whole-body pHregulation.
All along the way, community members must cooperate because no one group of investigatorscan possibly accomplish the ultimate goal single-handedly. The models must be open source,modular and sharable — and the community must share. Finally, in order for modelling approachesto be consistent, the community must establish standard approaches for gathering physiologicaldata, and agree on standard values for physiological parameters. Here, an organisation like theInternational Union of Physiological Sciences (IUPS)22 can play a critical role.
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